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Abstract:  

Autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Rheumatoid 

Arthritis (RA), and Multiple Sclerosis (MS), represent a growing global health burden. 

These diseases disproportionately affect women and the young, and their complex 

aetiology involves an interplay between genetic susceptibility and environmental triggers. 

In light of climate change’s increasing influence on health outcomes, this study explores 

the potential of machine learning (ML) models to predict climate-sensitive autoimmune 

diseases. We examine the integration of diverse data sources, such as electronic health 

records (EHRs), genomic data, and climate exposures, to enhance predictive accuracy. 

Current ML models in autoimmune disease prediction primarily rely on clinical and omics 

data, with limited consideration for environmental factors. We identify significant gaps, 

particularly in incorporating climate data such as particulate matter, UV radiation, and 

temperature variability. The study also highlights the challenges of data fusion, feature 

engineering, and causal inference in these models. Ethical concerns, including data 

privacy, model explainability, and equity, are also addressed. The research underscores 

the need for large-scale, prospective studies to validate climate-informed models and calls 

for policy-driven approaches to ensure equitable access and deployment. By bridging 

these gaps, climate-informed ML models hold promise for personalized, proactive disease 

prevention and public health planning. 
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Introduction

The Burden of Autoimmune Diseases in a 

Changing World 

The 21st century has witnessed a notable and 

concerning increase in the incidence and prevalence of 

autoimmune diseases, a complex class of chronic 

conditions where the body's immune system 

mistakenly attacks its own tissues [1, 2]. Autoimmune 

Diseases such as Systemic Lupus Erythematosus (SLE), 

Rheumatoid Arthritis (RA), and Multiple Sclerosis (MS) 

represent a significant and growing global health 

burden [3]. Autoimmune Diseases disproportionately 

affect women and the young and are a leading cause of 

morbidity and disability worldwide, imposing 

immense personal, social, and economic costs [4, 5]. The 

aetiology of these diseases is multifactorial, arising 

from an intricate interplay of genetic predispositions 

and environmental triggers. While genetic factors 

provide the 'susceptibility', it is the environmental 

'trigger' that often initiates the clinical presentation of 

the disease [6, 7]. 

The precise reasons for the rising trends remain 

elusive, but it is clear that our evolving environment 

plays a crucial role. The traditional medical paradigm 

has often focused on internal biological factors, but a 

more holistic and systems-based view is essential to 

unravel these complexities. The urgency for advanced 

predictive and preventive strategies has never been 

greater. Current diagnostic methods are often reactive, 

identifying the disease only after significant immune-

mediated damage has occurred. There is a pressing 

need to shift from a reactive to a proactive model of 

care, one that can identify individuals at high risk and 

intervene before disease onset. This shift requires 

sophisticated tools capable of integrating vast and 

disparate data sources to understand complex causal 

pathways. 

The Climate-Autoimmunity Link 

Among the most significant and rapidly changing 

environmental factors in the modern era is the climate 

itself. Climate change is not merely an abstract future 

threat; it is a current driver of health outcomes, 

including the modulation of immune system function 

[8]. The connection between climate and autoimmune 

diseases is a burgeoning field of study, providing 

compelling evidence that climate-related stressors can 

act as potent environmental triggers. The mechanisms 

linking these seemingly disparate domains are multi-

layered and involve a combination of direct biological 

effects and indirect ecological changes as shown in  

Figure 1 and Table 1. 

One prominent mechanism involves air pollution, 

particularly particulate matter (PM2.5). Exposure to 

PM2.5 has been associated with increased systemic 

inflammation and oxidative stress, which are 

underlying mechanisms in the development and 

exacerbation of autoimmune conditions [9, 10]. For 

example, studies have shown that high exposure to 

traffic-related air pollution is associated with an 

increased risk of developing rheumatoid arthritis [9, 

11]. The fine particles can penetrate deep into the lungs 

and even the bloodstream, triggering immune 

responses that become dysregulated over time. 

Another well-established link involves ultraviolet 

(UV) radiation exposure and diseases like Systemic 

Lupus Erythematosus (SLE). UV light is a known 

environmental trigger for SLE flares and is believed to 

contribute to disease pathogenesis through 

mechanisms that induce cell death (apoptosis) and alter 

immune regulation [12]. The changing patterns of UV 

exposure due to ozone layer variations and altered 

outdoor activity patterns in a warmer climate add 

another layer of complexity to disease risk 

management. 

Beyond specific pollutants and radiation, broader 

climate-related stressors such as extreme temperatures, 

altered seasonal patterns, and associated changes in 

local ecosystems are implicated. For instance, 

temperature variability has been linked to flare-ups in 

conditions like Multiple Sclerosis (MS) and Rheumatoid 

Arthritis (RA) [13, 14]. The proposed mechanisms are 

diverse, ranging from immune system alterations 

mediated by the gut microbiome (which is sensitive to 

dietary and environmental changes) to direct cellular 

stress responses [13, 14]. 

 

Table 1: The Link between Environmental/Climate Factors and Autoimmune Diseases 

Environmental/Climate Factor Associated Autoimmune 

Disease(s) 

Mechanism 

Particulate Matter (PM2.5) Rheumatoid Arthritis (RA), 

Systemic Lupus Erythematosus 

(SLE) 

Chronic inflammation, oxidative 

stress, immune dysregulation 
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UV-B Radiation Systemic Lupus Erythematosus 

(SLE), Multiple Sclerosis (MS) 

Immunosuppression, apoptosis 

of keratinocytes, Vitamin D 

synthesis modulation 

Extreme Temperature 

Variability 

Multiple Sclerosis (MS), 

Rheumatoid Arthritis (RA) 

Physiological stress response, 

altered pain perception, systemic 

inflammation 

Altered Gut Microbiome Inflammatory Bowel Disease 

(IBD), Type 1 Diabetes 

Dysbiosis, breakdown of gut 

barrier integrity, immune system 

activation 

[AUC: Area Under the Curve, SNP: Single Nucleotide 

Polymorphism, RA: Rheumatoid Arthritis, SLE: Systemic 

Lupus Erythematosus, RF: Random Forest, SVM: Support 

Vector Machine, GTB: Gradient Tree Boosting, XGBoost: 

eXtreme Gradient Boosting, NLP: Natural Language 

Processing]

 

Figure 1.  Conceptual Diagram of Biological Mechanisms Triggered by Climate Change 

 

 

The Promise of Machine Learning in Complex 

Health Systems 

Traditional statistical methods, while valuable, 

often struggle to capture the non-linear, multi-



Nwokedi et al.                                                                                                      Epidemiol Health Data Insights. 2026;2(1):ehdi025 
 

 

EHDI: https://www.journalehdi.com                                                             

dimensional, and time-dependent nature of the 

interactions between thousands of patient-specific 

variables and dynamic environmental factors. This is 

where machine learning (ML) emerges as a 

transformative tool for healthcare and public health 

[15]. ML algorithms excel at identifying subtle patterns 

and complex relationships within vast and 

heterogeneous datasets that might be invisible to 

human observation or traditional methods [15]. 

ML models, ranging from simple regression 

algorithms to sophisticated deep learning neural 

networks, can integrate patient electronic health 

records (EHRs), genomic data, social determinants of 

health, and crucially, large-scale environmental and 

climate data (e.g., satellite imagery, meteorological 

station data, air quality monitors). This capacity for data 

fusion is paramount for addressing a challenge as 

complex as climate-sensitive autoimmune diseases [16]. 

For example, a model could learn that a specific 

combination of genetic markers, prior infection history, 

and exposure to a certain level of PM2.5 in a specific 

season leads to a significantly elevated risk of RA onset 

three years later [17, 18]. Such insights enable far more 

precise and personalised risk assessments than are 

currently possible.  

Objective 

The main objective of this narrative review is to 

critically synthesize the existing literature on the use of 

machine learning for predicting autoimmune diseases 

and to explore the feasibility, challenges, and necessity 

of integrating granular climate and environmental data 

into such models.

Methodologies for Narrative Review and Literature Search

In carrying out this review a narrative synthesis 

approach was adopted and data captured  by 

conducting a comprehensive search across multiple 

electronic databases (PubMed, ScienceDirect, and 

Google Scholar). The search was performed  on 

September 10, 2024 using a combination of keywords to 

capture relevant publications from January 2010 to the 

search date. Key search terms were strategically 

combined using Boolean operators: (Machine Learning 

OR AI OR Artificial Intelligence OR Predictive Model) 

AND (Autoimmune Disease OR Rheumatoid Arthritis 

OR Systemic Lupus Erythematosus OR Multiple 

Sclerosis) AND (Climate Change OR Environmental 

Factors OR Air Pollution OR UV Radiation OR 

Temperature OR Environmental Triggers). The search 

was refined iteratively based on initial results to capture 

the breadth of both the medical and data science 

literature. 

The selection process was conducted in two 

stages. In the initial screening phase, titles and abstracts 

were reviewed for relevance to at least two of the three 

core thematic areas: machine learning, autoimmune 

diseases, and environmental/climate factors. Studies 

were included if they were primary research articles or 

review articles published in English. The exclusion 

criteria comprised editorials, commentaries, conference 

abstracts without full paper availability, and studies 

that solely focused on genetic factors without any 

environmental or machine learning component. 

In the second stage, the full texts of potentially 

relevant articles were retrieved and assessed for their 

direct contribution to the study. We also examined the 

reference lists of key review articles to identify 

additional relevant papers not captured by the initial 

keyword search. Narrative synthesis was carried out 

using emerging themes from the included studies to 

discuss this study in detail.

State‑of‑the‑Art of Machine Learning Models for Autoimmune Disease Prediction

In this section we critically review the data 

sources employed in existing models, the 

machine‑learning algorithms most commonly used in 

the autoimmune domain, and the performance and 

limitations of these models — with special attention to 

the notable gap of climate or environmental exposure 

integration.  

Data Sources in Existing Models 

The foundation of any predictive framework is the 

data on which it is built. In the autoimmune domain, 

three major classes of data sources dominate: electronic 

health records (EHRs) or clinical data, genomic / omics 

data, and lifestyle or environmental factors (although 

the latter remain under‑represented). Clinical or EHR 

data are ubiquitous: for example, models built to 

identify patients who warrant autoimmune disease 

testing leveraged EHR‑derived features (lab values, 

ICD codes, demographic data) in a large hospital 

biobank [19].  Omics data—such as genome‑wide SNP 

arrays, gene expression profiles, methylation or 

proteomic data—have increasingly been used, 

especially to refine risk prediction or subtype 

classification. For example, a study of Rheumatoid 

Arthritis (RA) and Systemic Lupus Erythematosus 

(SLE) used genome‑wide SNP data and applied ML 

algorithms (random forest, SVM, gradient tree 

boosting) to achieve AUCs of 0.98 or higher [20]. 

Lifestyle and environmental factors (smoking, BMI, 
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diet, physical activity) have been included in some 

models but remain much less common and rarely 

integrated with multi‑omics and clinical data. A recent 

bibliometric review noted that many autoimmune‑ML 

studies did not include multimodal exposures beyond 

the clinical/omics dimension [21]. In short: the bulk of 

predictive modelling for autoimmune diseases has 

relied on clinical/EHR and genomic/omics data; 

inclusion of environmental, behavioural and climate 

exposures has been minimal so far. 

Common Machine Learning Algorithms 

Turning to the algorithms, a consistent pattern 

emerges across reviews of autoimmune‑ML work. 

Supervised learning methods such as random forests 

(RF), support vector machines (SVMs) and logistic 

regression (LR) remain common, while neural 

networks and gradient boosting methods are 

increasingly encountered in more recent work. For 

instance, Stafford et al. (2020) found that in their 

systematic review of 169 ML studies in autoimmune 

diseases the most‑commonly used methods across the 

board were SVM and random forest [22].  In a more 

recent study using SNP data for RA and SLE, Chung 

et al. (2021) compared LR (AUC ≈ 0.82) with RF 

(AUC ≈ 0.98), SVM (≈0.98) and gradient tree boosting/ 

XGBoost (≈0.99) [20]. Deep learning (DL) and hybrid 

approaches are now emerging: for example, a 

multi‑task neural network designed to integrate DNA 

methylation data across multiple autoimmune 

phenotypes (RA, SLE, multiple sclerosis, type‑1 

diabetes) showed improved performance and 

interpretability [23]. One must note, however, that 

though deep models may give higher nominal 

accuracy, their transparency and reproducibility in the 

autoimmune space remain challenging. Reviews 

emphasise that the lack of standardisation of 

feature‑engineering, validation strategy, and the 

heterogeneity of autoimmune cohorts complicates 

algorithmic comparison [24]. 

Performance and Limitations of Current Models 

When we look at performance metrics, the results 

are encouraging but must be tempered with care. Many 

studies report high AUCs (often >0.90) and accuracies, 

especially where the data are well‑characterised and 

sample size adequate. For instance, in the ML pipeline 

integrating clinical, laboratory and omics data the 

authors achieved up to 96 % accuracy in classifying 

autoimmune disease status [25]. A meta‑analysis of 

AI/ML in autoimmune diseases reported a mean 

accuracy of ≈91.06 % (95 CI 86.38‑95.73%) across a 

variety of conditions (though the methods and 

definitions varied) [26]. These results suggest that 

algorithmically, the field is capable of strong 

discriminative performance under favourable 

conditions. 

Yet, several key limitations undermine the 

translation of these models into real‑world, 

climate‑sensitive prediction frameworks. First, 

generalisability: many models are trained on relatively 

homogeneous (often single‑centre) cohorts, and 

external validation is weak. The heterogeneity of 

autoimmune diseases (phenotypic variation, disease 

progression, comorbidities) further complicates 

transferability [24]. Second, data integration remains a 

challenge: combining EHR, genomics, imaging, 

lifestyle, and emerging climate‑ or exposome‑derived 

data is rare. Third, climate/environmental exposures 

(such as temperature extremes, UV exposure, air 

pollutants, humidity changes) are virtually absent in 

the majority of published autoimmune‑ML models — 

yet these exposures are biologically plausible triggers 

for immune dysregulation and autoimmunity. In other 

words, if one’s aim is to build a predictive model for 

climate‑sensitive autoimmune disease, this gap is acute. 

Moreover, interpretability and transparency pose 

further hurdles: many high‑performing models are 

“black boxes,” and their clinical adoption is hampered 

by lack of explainability. Ethical and data governance 

issues (privacy, biased sampling, missingness) also 

remain under‑addressed [21]. Finally, even when 

exposures are captured, temporal linkages (lag effects 

of climate on immune‑response) and fine‑grained 

spatial exposure data are seldom included. 

The Integration of Climate Data into Predictive Models: Challenges and Opportunities

Data Acquisition and Fusion 

Bringing together high‑resolution climate data 

with individual health records and other biomedical 

streams is no trivial task. Climate information is often 

captured at macro‑scales (satellite imagery, gridded 

model outputs, weather station networks) and at 

temporal granularities that may not align with clinical 

or patient‑level data. For example, a satellite‑derived 

measure of surface temperature or UV irradiance may 

come in daily or hourly bins over a spatial grid of 

kilometres, whereas individual‑level health records 

(e.g., from electronic health records (EHRs) or cohort 

databases) register exposures and events at the level of 

visits, diagnoses, biomarkers or even self‑reported 

symptoms [27]. Literature in climate‑health modelling 

emphasises that the integration of such distinct 

modalities — health, environment, social‑determinant 

data — requires both careful alignment in space and 
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time and rigorous handling of mismatches in resolution 

and missingness [28]. 

The fusion process typically involves geocoding 

patient residence or service‑use locations, linking them 

to the nearest climate grid cell or weather station, 

aggregating exposures over relevant windows (e.g., 

months or seasons) and then merging with routine 

clinical or demographic variables. Challenges arise 

when climate data are proprietary, when patient 

privacy limits granular location linking, or when 

temporal windows are arbitrarily chosen without 

proper justification. Further complexity emerges when 

climate exposures need to be harmonised with other 

environmental sensors (air pollution, pollen counts, 

humidity indices), lifestyle factors and genomic or 

biomarker data streams. The literature points out that 

many ML health models ignore this fusion step or treat 

climate data as an add‑on rather than a core modality 

[29]. 

Feature Engineering from Climate Data 

Once climate exposures are aligned to patient 

records or cohorts, the raw data still require 

transformation into features that an ML model can 

make sense of. For example, rather than simply 

including “daily maximum temperature” for a patient’s 

location, one might compute the cumulative number of 

heatwave days over the past six months, the rolling 

average of UV index exposures, or the number of days 

with extreme humidity above a certain threshold. These 

engineered variables potentiate the ability of the model 

to detect patterns tied to immune dysregulation or 

flare‑risk. In agricultural health‑modelling contexts, 

studies have translated raw climate variables into 

meaningful predictors (e.g., cumulative precipitation 

deficit) for crop yields; analogous methods hold for 

autoimmune disease contexts, though they remain rare 

[30].  

Strategic feature engineering entails domain 

knowledge: determining whether short‑term exposures 

(e.g., a heatwave in the past week) or long‑term 

exposures (e.g., seasonal shifts over the past year) 

matter more for autoimmune pathogenesis, selecting 

appropriate aggregation windows, and controlling for 

collinearity (for example, temperature and humidity 

often move together). In addition, transformations for 

lags, moving averages, thresholds and interaction terms 

(such as UV × smoking status) may yield richer 

predictors. Importantly, such features should be 

interpretable; for clinical translation, features labelled 

in human‑readable fashion (e.g., “6‑month cumulative 

days with UV index > 8”) facilitate stakeholder 

engagement. As the climatic drivers of immune 

dysfunction become better understood (e.g., pollen 

loads, drought stress, wild‑fire‑derived particulate 

matter), the feature‑engineering toolkit must expand 

accordingly [28]. 

Addressing the Causal Inference Problem 

Integrating climate features into ML models 

raises fundamental questions of causality versus 

correlation. It is comparatively straightforward to train 

a model that finds a statistical association between 

“high UV index exposures” and “autoimmune flare 

within 30 days”, but far harder to assert that the 

exposure caused the flare. The pathophysiology of 

autoimmune disease is complex, involving genetics, 

immune history, environment, and stochastic events. 

As the literature on immune-mediated disease 

emphasises, the exposome (cumulative environmental 

exposures) is rapidly changing due to climate change, 

but linking that to individual-level disease onset 

remains scientifically immature [28]. 

To strengthen causal interpretation in this 

context, it becomes essential to address temporal 

precedence, ensuring that environmental exposures not 

only correlate with—but clearly precede—disease 

events within biologically plausible windows. Recent 

methodological work underscores that establishing 

temporality is foundational to causal inference, 

particularly for environmental exposures whose effects 

may be delayed, cumulative, or episodic [31]. 

Autoimmune flares may arise weeks or months after 

relevant exposures, making it necessary for models to 

incorporate temporal lags and exposure windows 

rather than rely on static, cross-sectional measures. 

From a modelling vantage point, causal inference 

demands more than high accuracy: one must consider 

bias, confounding (for example, patients living in urban 

heat-island zones may also have higher pollution, 

different access to care, or different socioeconomic 

status), and temporal precedence (does the exposure 

precede the disease event in a biologically plausible 

window?). Ignoring this may produce models that 

predict well but offer little mechanistic insight or 

clinical trust. One way to strengthen temporal 

reasoning is through longitudinal datasets, which allow 

researchers to track exposures and disease outcomes 

over time, enabling clearer separation of cause and 

effect [32]. Longitudinal climate-health designs also 

reduce the risk of reverse causation—a frequent 

limitation in ecological and cross-sectional studies. 

Another critical consideration is the selection and 

structure of the study population. Heterogeneity in 

exposure is common in climate-health research, and 

failing to account for socioeconomic, geographic, and 

health-related differences can introduce substantial 

selection bias. Stratifying populations based on 

geography, environmental burden, baseline immune 

vulnerability, or socioeconomic position helps ensure 



Nwokedi et al.                                               Epidemiol Health Data Insights. 2025;1(2):ehdi99999. 
 

 

EHDI: https://www.journalehdi.com                                                             

that observed associations are not artefacts of unequal 

exposure distributions [33, 34]. Such stratification 

improves validity and better reflects the uneven 

climate-related burdens many communities face. 

Similarly, the classification of both exposure and 

outcome requires careful attention. Climate exposures 

differ in intensity, duration, and timing, and 

autoimmune outcomes differ in onset, severity, and 

chronicity. Defining exposures using cumulative, 

lagged, or threshold-based metrics helps align 

environmental measures with the biological timelines 

of autoimmune activation [35]. Likewise, clearly 

distinguishing incident autoimmune disease from flare-

ups or exacerbations is crucial to avoid outcome 

misclassification, a frequent source of bias in 

observational epidemiology. 

Hybrid approaches combining ML with causal-

inference frameworks (e.g., directed acyclic graphs, 

instrumental variables) are gaining traction in climate-

health research, though rarely applied in autoimmune-

ML work to date [36]. Incorporating methods such as 

propensity score matching, inverse probability 

weighting, or instrumental variable estimation can 

reduce confounding and help approximate causal 

effects in the absence of randomized designs [37, 38]. 

Such methods are increasingly recommended for 

complex environmental-health settings where 

exposures cannot be randomized and confounders are 

interrelated [39]. 

Furthermore, interpretability remains crucial: 

clinician stakeholders must understand how a climate-

derived predictor contributes to risk, else model 

outputs may not be adopted. The ethical dimension is 

also non-trivial: exposures may be unequally 

distributed (e.g., heat stress in low-income 

communities), and if climate-informed models do not 

account for those equity dimensions, they risk 

replicating bias or deepening disparities. This interplay 

between climate, health, and equity is a theme 

emerging in recent work [28]. 

Ultimately, integrating climate data into 

autoimmune-disease predictive modelling presents 

real promise: it opens a pathway to anticipate disease 

risks tied to global environmental change. Yet the path 

is strewn with methodological, technical and ethical 

obstacles. By carefully acquiring and fusing data, 

engineering meaningful features, and attending to 

causality and transparency, researchers can build 

models that are not only predictive but also clinically 

and socially responsible. The conceptual framework 

depicted in Figure 1 underscores that success will 

require bridging raw data streams into a refined ML 

architecture that delivers individualised risk scores 

while maintaining clear lines of explanation and 

governance.

Potential Applications and Clinical Implications of Climate‑Informed Models

Personalised Risk Stratification 

By incorporating climate exposures such as 

cumulative UV‑index, heatwave days, humidity shifts 

or air‑pollution peaks, a model can refine the baseline 

risk derived from genetics, lifestyle and clinical history. 

Evidence suggests that climate change is altering the 

exposome in ways relevant to autoimmunity — for 

instance, shifts in pollen burden, wildfire smoke and 

heat‑stress have been linked to immune dysregulation 

[28]. With climate‑informed features embedded in an 

ML‑pipeline, clinicians could identify those whose risk 

profile is unexpectedly elevated because of recent 

environmental exposures, even when their genomic or 

lifestyle risk seems modest. This opens up the 

possibility of true anticipatory care: intervening before 

irreversible immune damage accumulates. From a 

patient‑empowerment perspective, being given a 

personalised risk score tied to modifiable exposures can 

catalyse engagement, trust and preventive behaviour. 

Preventive Interventions 

Once a high‑risk individual is identified, 

climate‑informed modelling enables targeted 

preventive actions. Rather than generic advice, the 

clinician could issue timesensitive recommendations: 

for example, “Avoid outdoor activity on forecasted 

high‑UV or high‑pollution days” or “Increase 

sun‑protection following a sustained heat‑wave over 

the past fortnight”. The literature on climate change 

adaptation in public health underlines the importance 

of such context‑specific behavioural guidance [40]. 

Moreover, when a model flags heightened risk because 

of a hot‑spell or wildfire exposure, health systems could 

trigger early‑warning alerts to those patients, 

prompting check‑ups or pre‑emptive 

anti‑inflammatory monitoring. This proactive model 

offers a dynamic, rather than static, preventive 

paradigm—especially important in an era where 

climate variability is increasing the frequency of 

triggering exposures [41].  

Resource Allocation and Public Health Policy 

Beyond individual care, climate‑informed 

autoimmune‑disease models offer tremendous value 

for public‑health planning and resource allocation. If a 

region is predicted to experience a cluster of exposures 

(e.g., heatwave followed by high ozone/pollution days) 

that historically drive increased autoimmune flare‑ups, 

https://gh.bmj.com/content/8/Suppl_3/e015550?utm_source=chatgpt.com


Nwokedi et al.                                               Epidemiol Health Data Insights. 2025;1(2):ehdi99999. 
 

 

EHDI: https://www.journalehdi.com                                                             

then the local health system can pre‑position resources: 

staffing for rheumatology clinics, alerting primary‑care 

networks, and ensuring diagnostic capacity is ramped 

up. The broader literature on climate‑sensitive health 

risk emphasises that detection and prediction of 

environmental‑health hotspots is key to resilience [42]. 

In policy terms, aggregated outputs from many 

individuals’ risk‑scores could inform zoning, 

heat‑mitigation programmes, and environmental 

health regulation — by linking climate stressors to 

disease‑burden in actionable models, health policy can 

move from reactive to anticipatory. 

In sum, the integration of climate data into 

predictive modelling for autoimmune diseases 

promises to shift practice in three interlinked domains: 

personalised risk stratification, time‑sensitive 

preventive action and system‑level planning. The 

challenge will be ensuring the models are robust, 

interpretable and ethically deployed so that they serve 

individuals equitably and enhance public‑health 

resilience in a warming world.

Table 2: Framework for Integrating Climate and Health Data in Predictive Modeling for Autoimmune Disease 

Risk 

Stage Data Sources / Processes Description 

1. Data Acquisition Electronic Health Records 

(EHRs), Climate Sensors, 

Satellite Imagery 

These data sources provide 

crucial health, environmental, 

and geographical information. 

2. Data Preprocessing & Feature 

Engineering 

Integration and transformation 

of raw data into meaningful 

features 

Raw data is processed, cleaned, 

and transformed into usable 

features, e.g., cumulative 

exposure. 

3. Integrated Dataset Merged dataset combining 

health and climate data 

Data from different sources are 

fused into one cohesive dataset, 

ready for machine learning. 

4. Machine Learning Model ML algorithms (e.g., Random 

Forest, Support Vector Machine 

(SVM), etc.) 

The integrated dataset is fed into 

a machine learning model to 

predict disease risk. 

5. Predictive Output Individual Risk Score (e.g., 

likelihood of flare) 

The model generates a predictive 

output that assesses the 

individual’s risk level for disease. 

 

 

Ethical Considerations and Future Directions

As the field of predictive modelling for 

climate‑sensitive autoimmune diseases moves forward, 

it is crucial to hold a mirror up to the ethical dimensions 

and to chart a responsible path for future research. The 

interplay between sensitive health data, complex 

machine learning frameworks and the broader 

pathogenic role of climate exposures demands a 

reflexive mindset.  

Firstly, any model that integrates health records 

with granular climate and geolocation data must 

grapple with data privacy and security in a rigorous 

way. When clinicians or researchers merge 

individual‑level EHRs with spatial‑temporal grids of 

climate or pollutant exposure, the potential to 

inadvertently re‑identify individuals or expose 

sensitive location histories becomes real. Literature on 

AI‑driven healthcare emphasises that patient consent, 

data ownership, secure transmission and storage 

protocols are non‑negotiable. Federated learning and 

differential privacy techniques offer promise, but they 

are neither universal nor fool‑proof [43]. Beyond 

technical solutions, equity matters: those living in 

marginalized communities may be less protected by 

data governance frameworks, raising justice and 

fairness concerns. If risk‑scores derived from 

climate‑linked ML models are misused (for insurance, 

employment, or discrimination) the very promise of 
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personalized prevention could flip into a new axis of 

inequality. 

Secondly, model explainability and trust are at 

the heart of clinical acceptance and ethical deployment. 

Building a high‑accuracy algorithm is only half the 

battle; the clinician and ultimately the patient must 

understand, at least in part, why a risk assessment was 

made. “Black box” models, which amalgamate 

hundreds of features (clinical, genomic, climate) into an 

opaque output, increase the likelihood of scepticism or 

outright rejection in practice. Reviews in medical AI 

stress that explainable AI (XAI), domain‑adaptive 

transfer learning and transparency are key to safe 

deployment [44]. In our climate‑informed autoimmune 

context, it means that the feature “72‑day heatwave 

exposure + UV index > 8” should map coherently to 

immune system activation in clinician‑familiar 

language. If a model says “High risk” without linking 

back to interpretable biological or environmental logic, 

trust will erode. Moreover, model failures must be 

auditable, and governance frameworks should ensure 

fairness across different geographies, socio‑economic 

strata and climate zones. 

Thirdly, turning to future directions, the research 

agenda needs expansion and deepening. There is a clear 

need for large‑scale, prospective studies that follow 

cohorts over time, capturing not only clinical and 

genomic data but detailed climate‑ and 

environment‑exposure histories. While retrospective 

modelling is useful, true validation of climate‑informed 

risk predictions requires longitudinal data that reflects 

changing exposures, immune system priming and 

eventual disease onset. The mechanistic biology also 

calls for deeper enquiry: as illustrated in the diagram 

above, climate‑related exposures (for instance, 

particulate matter, UV radiation, humidity shifts) may 

trigger oxidative stress, DNA damage, microbiome 

dysbiosis, epigenetic reprogramming and ultimately 

immune activation—and these pathways remain 

insufficiently mapped in autoimmune disease contexts 

[45]. Additionally, regional equity should not be an 

afterthought. Climate exposures differ dramatically by 

geography, and models built in temperate nations may 

not translate to tropical or low‑income settings without 

recalibration and local data. In parallel, there is the 

ethical imperative to ensure that the benefits of such 

predictive models (early‑warning, prevention, resource 

allocation) do not widen health disparities. 

In essence, while the promise of climate‑informed 

predictive modelling for autoimmune diseases is 

substantial, the pathway is bound to ethical, technical 

and equity‑related constraints. Data‑protection 

architecture must be robust and context‑sensitive; 

model interpretability must be baked into design not 

afterthought; and research must scale into prospective, 

globally representative efforts. Only then can we build 

models that not only predict but serve—in a way that is 

scientifically sound, ethically grounded and socially 

just.

Conclusion
Integrating climate data into predictive models 

for autoimmune diseases offers transformative 

potential for early risk stratification and personalized 

interventions. While the approach promises more 

precise prevention strategies, challenges in data fusion, 

ethical considerations, and model explainability 

remain. Future research must focus on large‑scale, 

longitudinal studies and address regional disparities to 

ensure equitable, actionable outcomes. Policymakers 

should prioritize climate-informed health strategies to 

improve disease prevention and resource allocation in 

a changing environment.
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