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Abstract:

Autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Rheumatoid
Arthritis (RA), and Multiple Sclerosis (MS), represent a growing global health burden.
These diseases disproportionately affect women and the young, and their complex
aetiology involves an interplay between genetic susceptibility and environmental triggers.
In light of climate change’s increasing influence on health outcomes, this study explores
the potential of machine learning (ML) models to predict climate-sensitive autoimmune
diseases. We examine the integration of diverse data sources, such as electronic health
records (EHRs), genomic data, and climate exposures, to enhance predictive accuracy.
Current ML models in autoimmune disease prediction primarily rely on clinical and omics
data, with limited consideration for environmental factors. We identify significant gaps,
particularly in incorporating climate data such as particulate matter, UV radiation, and
temperature variability. The study also highlights the challenges of data fusion, feature
engineering, and causal inference in these models. Ethical concerns, including data
privacy, model explainability, and equity, are also addressed. The research underscores
the need for large-scale, prospective studies to validate climate-informed models and calls
for policy-driven approaches to ensure equitable access and deployment. By bridging
these gaps, climate-informed ML models hold promise for personalized, proactive disease
prevention and public health planning.
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Introduction

The Burden of Autoimmune Diseases in a
Changing World

The 21st century has witnessed a notable and
concerning increase in the incidence and prevalence of
autoimmune diseases, a complex class of chronic
conditions where the body's immune system
mistakenly attacks its own tissues [1, 2]. Autoimmune
Diseases such as Systemic Lupus Erythematosus (SLE),
Rheumatoid Arthritis (RA), and Multiple Sclerosis (MS)
represent a significant and growing global health
burden [3]. Autoimmune Diseases disproportionately
affect women and the young and are a leading cause of
morbidity and disability worldwide, imposing
immense personal, social, and economic costs [4, 5]. The
aetiology of these diseases is multifactorial, arising
from an intricate interplay of genetic predispositions
and environmental triggers. While genetic factors
provide the 'susceptibility’, it is the environmental
'trigger’ that often initiates the clinical presentation of
the disease [6, 7].

The precise reasons for the rising trends remain
elusive, but it is clear that our evolving environment
plays a crucial role. The traditional medical paradigm
has often focused on internal biological factors, but a
more holistic and systems-based view is essential to
unravel these complexities. The urgency for advanced
predictive and preventive strategies has never been
greater. Current diagnostic methods are often reactive,
identifying the disease only after significant immune-
mediated damage has occurred. There is a pressing
need to shift from a reactive to a proactive model of
care, one that can identify individuals at high risk and
intervene before disease onset. This shift requires
sophisticated tools capable of integrating vast and
disparate data sources to understand complex causal
pathways.

The Climate-Autoimmunity Link

Among the most significant and rapidly changing
environmental factors in the modern era is the climate
itself. Climate change is not merely an abstract future
threat; it is a current driver of health outcomes,
including the modulation of immune system function

[8]. The connection between climate and autoimmune
diseases is a burgeoning field of study, providing
compelling evidence that climate-related stressors can
act as potent environmental triggers. The mechanisms
linking these seemingly disparate domains are multi-
layered and involve a combination of direct biological
effects and indirect ecological changes as shown in
Figure 1 and Table 1.

One prominent mechanism involves air pollution,
particularly particulate matter (PM2.5). Exposure to
PM2.5 has been associated with increased systemic
inflammation and oxidative stress, which are
underlying mechanisms in the development and
exacerbation of autoimmune conditions [9, 10]. For
example, studies have shown that high exposure to
traffic-related air pollution is associated with an
increased risk of developing rheumatoid arthritis [9,
11]. The fine particles can penetrate deep into the lungs
and even the bloodstream, triggering immune
responses that become dysregulated over time.

Another well-established link involves ultraviolet
(UV) radiation exposure and diseases like Systemic
Lupus Erythematosus (SLE). UV light is a known
environmental trigger for SLE flares and is believed to
contribute  to pathogenesis
mechanisms that induce cell death (apoptosis) and alter
immune regulation [12]. The changing patterns of UV
exposure due to ozone layer variations and altered
outdoor activity patterns in a warmer climate add

disease through

another layer of complexity to disease risk
management.

Beyond specific pollutants and radiation, broader
climate-related stressors such as extreme temperatures,
altered seasonal patterns, and associated changes in
local ecosystems are implicated. For instance,
temperature variability has been linked to flare-ups in
conditions like Multiple Sclerosis (MS) and Rheumatoid
Arthritis (RA) [13, 14]. The proposed mechanisms are
diverse, ranging from immune system alterations
mediated by the gut microbiome (which is sensitive to
dietary and environmental changes) to direct cellular
stress responses [13, 14].

Table 1: The Link between Environmental/Climate Factors and Autoimmune Diseases

Associated
Disease(s)

Environmental/Climate Factor

Autoimmune | Mechanism

Particulate Matter (PM2.5)

(SLE)

Rheumatoid  Arthritis (RA), | Chronic inflammation, oxidative
Systemic Lupus Erythematosus | stress, immune dysregulation
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UV-B Radiation Systemic Lupus Erythematosus | Inmunosuppression, apoptosis
(SLE), Multiple Sclerosis (MS) of keratinocytes, Vitamin D
synthesis modulation
Extreme Temperature | Multiple Sclerosis (MS), | Physiological stress response,
Variability Rheumatoid Arthritis (RA) altered pain perception, systemic
inflammation
Altered Gut Microbiome Inflammatory Bowel Disease | Dysbiosis, breakdown of gut
(IBD), Type 1 Diabetes barrier integrity, immune system
activation
[AUC: Area Under the Curve, SNP: Single Nucleotide Vector Machine, GTB: Gradient Tree Boosting, XGBoost:
Polymorphism, RA: Rheumatoid Arthritis, SLE: Systemic eXtreme Gradient Boosting, NLP: Natural Language
Lupus Erythematosus, RF: Random Forest, SVM: Support Processing]

CLIMATE & ENVIRONMENTAL STRESSSORS

Temperature Extremes (Heatwaves / Severe Cold) Air Pollution (PM2.5, NO., Os)
Humidity Variability Wildfire Smoke / Dust Storms
Ultraviolet Radiation Shifts Rainfall Anomalies / Flooding

'

BIOLOGICAL INTERMEDIARIES

e Oxidative Stress (ROS, DNA damage) e Immune-Cell Dysregulation
¢ Microbiome Shifts (gut/skin/lung) i e Cytokine Activation (TNF-a, IL-6, IL-17)

IMMUNE SYSTEM EFFECTS

e Loss of Immune Tolerance * T-cell Imbalance (| T-regs, 1Th17)
¢ Heightened Autoantibody Production * Hyperinflammation / Cytokine Storms
¢ Increased Antigen Presentation ¢

AUTOIMMUNE OUTCOMES

» Systemic Lupus * Type 1 Diabetes * Type 1 Diabetes

¢ Rheumatoid Arthritis ¢ Multiple Sclerosis ¢ Inflammatory Bowel Disease

e Multiple Sclerosis  Psoriasis (Crohn's, Ulcerative Colitis)
Psoriasis

Figure 1. Conceptual Diagram of Biological Mechanisms Triggered by Climate Change

The Promise of Machine Learning in Complex Traditional statistical methods, while valuable,
Health Systems often struggle to capture the non-linear, multi-
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dimensional, and time-dependent nature of the
interactions between thousands of patient-specific
variables and dynamic environmental factors. This is
where machine learning (ML) emerges as a
transformative tool for healthcare and public health
[15]. ML algorithms excel at identifying subtle patterns
and complex relationships within vast and
heterogeneous datasets that might be invisible to
human observation or traditional methods [15].

ML models, ranging from simple regression
algorithms to sophisticated deep learning neural
networks, can integrate patient electronic health
records (EHRs), genomic data, social determinants of
health, and crucially, large-scale environmental and
climate data (e.g. satellite imagery, meteorological
station data, air quality monitors). This capacity for data

fusion is paramount for addressing a challenge as
complex as climate-sensitive autoimmune diseases [16].
For example, a model could learn that a specific
combination of genetic markers, prior infection history,
and exposure to a certain level of PM2.5 in a specific
season leads to a significantly elevated risk of RA onset
three years later [17, 18]. Such insights enable far more
precise and personalised risk assessments than are
currently possible.

Objective

The main objective of this narrative review is to
critically synthesize the existing literature on the use of
machine learning for predicting autoimmune diseases
and to explore the feasibility, challenges, and necessity
of integrating granular climate and environmental data
into such models.

Methodologies for Narrative Review and Literature Search

In carrying out this review a narrative synthesis
approach was adopted and data captured by
conducting a comprehensive search across multiple
electronic databases (PubMed, ScienceDirect, and
Google Scholar). The search was performed on
September 10, 2024 using a combination of keywords to
capture relevant publications from January 2010 to the
search date. Key search terms were strategically
combined using Boolean operators: (Machine Learning
OR AI OR Artificial Intelligence OR Predictive Model)
AND (Autoimmune Disease OR Rheumatoid Arthritis
OR Systemic Lupus Erythematosus OR Multiple
Sclerosis) AND (Climate Change OR Environmental
Factors OR Air Pollution OR UV Radiation OR
Temperature OR Environmental Triggers). The search
was refined iteratively based on initial results to capture
the breadth of both the medical and data science
literature.

The selection process was conducted in two
stages. In the initial screening phase, titles and abstracts
were reviewed for relevance to at least two of the three
core thematic areas: machine learning, autoimmune
diseases, and environmental/climate factors. Studies
were included if they were primary research articles or
review articles published in English. The exclusion
criteria comprised editorials, commentaries, conference
abstracts without full paper availability, and studies
that solely focused on genetic factors without any
environmental or machine learning component.

In the second stage, the full texts of potentially
relevant articles were retrieved and assessed for their
direct contribution to the study. We also examined the
reference lists of key review articles to identify
additional relevant papers not captured by the initial
keyword search. Narrative synthesis was carried out
using emerging themes from the included studies to
discuss this study in detail.

State-of-the-Art of Machine Learning Models for Autoimmune Disease Prediction

In this section we critically review the data
sources employed in existing models, the
machine-learning algorithms most commonly used in
the autoimmune domain, and the performance and
limitations of these models — with special attention to
the notable gap of climate or environmental exposure
integration.

Data Sources in Existing Models

The foundation of any predictive framework is the
data on which it is built. In the autoimmune domain,
three major classes of data sources dominate: electronic
health records (EHRs) or clinical data, genomic / omics
data, and lifestyle or environmental factors (although
the latter remain under-represented). Clinical or EHR

data are ubiquitous: for example, models built to
identify patients who warrant autoimmune disease
testing leveraged EHR-derived features (lab values,
ICD codes, demographic data) in a large hospital
biobank [19]. Omics data—such as genome-wide SNP
arrays, gene expression profiles, methylation or
proteomic data—have increasingly been used,
especially to refine risk prediction or subtype
classification. For example, a study of Rheumatoid
Arthritis (RA) and Systemic Lupus Erythematosus
(SLE) used genome-wide SNP data and applied ML
algorithms (random forest, SVM, gradient tree
boosting) to achieve AUCs of 0.98 or higher [20].
Lifestyle and environmental factors (smoking, BMI,
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diet, physical activity) have been included in some
models but remain much less common and rarely
integrated with multi-omics and clinical data. A recent
bibliometric review noted that many autoimmune-ML
studies did not include multimodal exposures beyond
the clinical/omics dimension [21]. In short: the bulk of
predictive modelling for autoimmune diseases has
relied on clinical/lEHR and genomic/omics data;
inclusion of environmental, behavioural and climate
exposures has been minimal so far.

Common Machine Learning Algorithms

Turning to the algorithms, a consistent pattern
emerges across reviews of autoimmune-ML work.
Supervised learning methods such as random forests
(RF), support vector machines (SVMs) and logistic
regression (LR) remain common, while neural
networks and gradient boosting methods are
increasingly encountered in more recent work. For
instance, Stafford etal. (2020) found that in their
systematic review of 169 ML studies in autoimmune
diseases the most-commonly used methods across the
board were SVM and random forest [22]. In a more
recent study using SNP data for RA and SLE, Chung
etal. (2021) compared LR (AUC=0.82) with RF
(AUC=0.98), SVM (=0.98) and gradient tree boosting/
XGBoost (=0.99) [20]. Deep learning (DL) and hybrid
approaches are now emerging: for example, a
multi-task neural network designed to integrate DNA
methylation data across multiple autoimmune
phenotypes (RA, SLE, multiple sclerosis, type-1
diabetes) showed improved performance and
interpretability [23]. One must note, however, that
though deep models may give higher nominal
accuracy, their transparency and reproducibility in the
autoimmune space remain challenging. Reviews
emphasise that the lack of standardisation of
feature-engineering, validation strategy, and the
heterogeneity of autoimmune cohorts complicates
algorithmic comparison [24].

Performance and Limitations of Current Models

When we look at performance metrics, the results
are encouraging but must be tempered with care. Many

studies report high AUCs (often >0.90) and accuracies,
especially where the data are well-characterised and
sample size adequate. For instance, in the ML pipeline
integrating clinical, laboratory and omics data the
authors achieved up to 96 % accuracy in classifying
autoimmune disease status [25]. A meta-analysis of
AI/ML in autoimmune diseases reported a mean
accuracy of =91.06 % (95CI 86.38-95.73%) across a
variety of conditions (though the methods and
definitions varied) [26]. These results suggest that
algorithmically, the field is capable of strong
discriminative  performance under favourable
conditions.

Yet, several key limitations undermine the
translation of these models into real-world,
climate-sensitive = prediction frameworks.  First,
generalisability: many models are trained on relatively
homogeneous (often single-centre) cohorts, and
external validation is weak. The heterogeneity of
autoimmune diseases (phenotypic variation, disease
progression, comorbidities) further complicates
transferability [24]. Second, data integration remains a
challenge: combining EHR, genomics, imaging,
lifestyle, and emerging climate- or exposome-derived
data is rare. Third, climate/environmental exposures
(such as temperature extremes, UV exposure, air
pollutants, humidity changes) are virtually absent in
the majority of published autoimmune-ML models —
yet these exposures are biologically plausible triggers
for immune dysregulation and autoimmunity. In other
words, if one’s aim is to build a predictive model for
climate-sensitive autoimmune disease, this gap is acute.
Moreover, interpretability and transparency pose
further hurdles: many high-performing models are
“black boxes,” and their clinical adoption is hampered
by lack of explainability. Ethical and data governance
issues (privacy, biased sampling, missingness) also
remain under-addressed [21]. Finally, even when
exposures are captured, temporal linkages (lag effects
of climate on immune-response) and fine-grained
spatial exposure data are seldom included.

The Integration of Climate Data into Predictive Models: Challenges and Opportunities

Data Acquisition and Fusion

Bringing together high-resolution climate data
with individual health records and other biomedical
streams is no trivial task. Climate information is often
captured at macro-scales (satellite imagery, gridded
model outputs, weather station networks) and at
temporal granularities that may not align with clinical
or patient-level data. For example, a satellite-derived
measure of surface temperature or UV irradiance may

come in daily or hourly bins over a spatial grid of
kilometres, whereas individual-level health records
(e.g., from electronic health records (EHRs) or cohort
databases) register exposures and events at the level of
visits, diagnoses, biomarkers or even self-reported
symptoms [27]. Literature in climate-health modelling
emphasises that the integration of such distinct
modalities — health, environment, social-determinant
data — requires both careful alignment in space and
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time and rigorous handling of mismatches in resolution
and missingness [28].

The fusion process typically involves geocoding
patient residence or service-use locations, linking them
to the nearest climate grid cell or weather station,
aggregating exposures over relevant windows (e.g.,
months or seasons) and then merging with routine
clinical or demographic variables. Challenges arise
when climate data are proprietary, when patient
privacy limits granular location linking, or when
temporal windows are arbitrarily chosen without
proper justification. Further complexity emerges when
climate exposures need to be harmonised with other
environmental sensors (air pollution, pollen counts,
humidity indices), lifestyle factors and genomic or
biomarker data streams. The literature points out that
many ML health models ignore this fusion step or treat
climate data as an add-on rather than a core modality
[29].

Feature Engineering from Climate Data

Once climate exposures are aligned to patient
records or cohorts, the raw data still require
transformation into features that an ML model can
make sense of. For example, rather than simply
including “daily maximum temperature” for a patient’s
location, one might compute the cumulative number of
heatwave days over the past six months, the rolling
average of UV index exposures, or the number of days
with extreme humidity above a certain threshold. These
engineered variables potentiate the ability of the model
to detect patterns tied to immune dysregulation or
flare-risk. In agricultural health-modelling contexts,
studies have translated raw climate variables into
meaningful predictors (e.g., cumulative precipitation
deficit) for crop yields; analogous methods hold for
autoimmune disease contexts, though they remain rare
[30].

Strategic feature engineering entails domain
knowledge: determining whether short-term exposures
(e.g., a heatwave in the past week) or long-term
exposures (e.g., seasonal shifts over the past year)
matter more for autoimmune pathogenesis, selecting
appropriate aggregation windows, and controlling for
collinearity (for example, temperature and humidity
often move together). In addition, transformations for
lags, moving averages, thresholds and interaction terms
(such as UV xsmoking status) may yield richer
predictors. Importantly, such features should be
interpretable; for clinical translation, features labelled
in human-readable fashion (e.g., “6-month cumulative
days with UV index > 8”) facilitate stakeholder
engagement. As the climatic drivers of immune
dysfunction become better understood (e.g., pollen
loads, drought stress, wild-fire-derived particulate

matter), the feature-engineering toolkit must expand
accordingly [28].

Addressing the Causal Inference Problem

Integrating climate features into ML models
raises fundamental questions of causality versus
correlation. It is comparatively straightforward to train
a model that finds a statistical association between
“high UV index exposures” and “autoimmune flare
within 30 days”, but far harder to assert that the
exposure caused the flare. The pathophysiology of
autoimmune disease is complex, involving genetics,
immune history, environment, and stochastic events.
As the literature on immune-mediated disease
emphasises, the exposome (cumulative environmental
exposures) is rapidly changing due to climate change,
but linking that to individual-level disease onset
remains scientifically immature [28].

To strengthen causal interpretation in this
context, it becomes essential to address temporal
precedence, ensuring that environmental exposures not
only correlate with—but clearly precede—disease
events within biologically plausible windows. Recent
methodological work underscores that establishing
temporality is foundational to causal inference,
particularly for environmental exposures whose effects
may be delayed, cumulative, or episodic [31].
Autoimmune flares may arise weeks or months after
relevant exposures, making it necessary for models to
incorporate temporal lags and exposure windows
rather than rely on static, cross-sectional measures.

From a modelling vantage point, causal inference
demands more than high accuracy: one must consider
bias, confounding (for example, patients living in urban
heat-island zones may also have higher pollution,
different access to care, or different socioeconomic
status), and temporal precedence (does the exposure
precede the disease event in a biologically plausible
window?). Ignoring this may produce models that
predict well but offer little mechanistic insight or
clinical trust. One way to strengthen temporal
reasoning is through longitudinal datasets, which allow
researchers to track exposures and disease outcomes
over time, enabling clearer separation of cause and
effect [32]. Longitudinal climate-health designs also
reduce the risk of reverse causation—a frequent
limitation in ecological and cross-sectional studies.

Another critical consideration is the selection and
structure of the study population. Heterogeneity in
exposure is common in climate-health research, and
failing to account for socioeconomic, geographic, and
health-related differences can introduce substantial
selection bias. Stratifying populations based on
geography, environmental burden, baseline immune
vulnerability, or socioeconomic position helps ensure
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that observed associations are not artefacts of unequal
exposure distributions [33, 34]. Such stratification
improves validity and better reflects the uneven
climate-related burdens many communities face.

Similarly, the classification of both exposure and
outcome requires careful attention. Climate exposures
differ in intensity, duration, and timing, and
autoimmune outcomes differ in onset, severity, and
chronicity. Defining exposures using cumulative,
lagged, or threshold-based metrics helps align
environmental measures with the biological timelines
of autoimmune activation [35]. Likewise, clearly
distinguishing incident autoimmune disease from flare-
ups or exacerbations is crucial to avoid outcome
misclassification, a frequent source of bias in
observational epidemiology.

Hybrid approaches combining ML with causal-
inference frameworks (e.g., directed acyclic graphs,
instrumental variables) are gaining traction in climate-
health research, though rarely applied in autoimmune-
ML work to date [36]. Incorporating methods such as
propensity score matching, inverse probability
weighting, or instrumental variable estimation can
reduce confounding and help approximate causal
effects in the absence of randomized designs [37, 38].
Such methods are increasingly recommended for
complex  environmental-health  settings  where

exposures cannot be randomized and confounders are
interrelated [39].

Furthermore, interpretability remains crucial:
clinician stakeholders must understand how a climate-
derived predictor contributes to risk, else model
outputs may not be adopted. The ethical dimension is
also non-trivial: exposures may be unequally
distributed (e.g., heat stress in low-income
communities), and if climate-informed models do not
account for those equity dimensions, they risk
replicating bias or deepening disparities. This interplay
between climate, health, and equity is a theme
emerging in recent work [28].

Ultimately, integrating climate data into
autoimmune-disease predictive modelling presents
real promise: it opens a pathway to anticipate disease
risks tied to global environmental change. Yet the path
is strewn with methodological, technical and ethical
obstacles. By carefully acquiring and fusing data,
engineering meaningful features, and attending to
causality and transparency, researchers can build
models that are not only predictive but also clinically
and socially responsible. The conceptual framework
depicted in Figure 1 underscores that success will
require bridging raw data streams into a refined ML
architecture that delivers individualised risk scores
while maintaining clear lines of explanation and
governance.

Potential Applications and Clinical Implications of Climate-Informed Models

Personalised Risk Stratification

By incorporating climate exposures such as
cumulative UV-index, heatwave days, humidity shifts
or air-pollution peaks, a model can refine the baseline
risk derived from genetics, lifestyle and clinical history.
Evidence suggests that climate change is altering the
exposome in ways relevant to autoimmunity — for
instance, shifts in pollen burden, wildfire smoke and
heat-stress have been linked to immune dysregulation
[28]. With climate-informed features embedded in an
ML-pipeline, clinicians could identify those whose risk
profile is unexpectedly elevated because of recent
environmental exposures, even when their genomic or
lifestyle risk seems modest. This opens up the
possibility of true anticipatory care: intervening before
irreversible immune damage accumulates. From a
patient-empowerment perspective, being given a
personalised risk score tied to modifiable exposures can
catalyse engagement, trust and preventive behaviour.

Preventive Interventions

Once a high-risk individual is identified,
modelling  enables  targeted
preventive actions. Rather than generic advice, the

climate-informed

clinician could issue timesensitive recommendations:
for example, “Avoid outdoor activity on forecasted
high-UV or high-pollution days” or “Increase
sun-protection following a sustained heat-wave over
the past fortnight”. The literature on climate change
adaptation in public health underlines the importance
of such context-specific behavioural guidance [40].
Moreover, when a model flags heightened risk because
of a hot-spell or wildfire exposure, health systems could
trigger early-warning alerts to those patients,
prompting check-ups or pre-emptive
anti-inflammatory monitoring. This proactive model
offers a dynamic, rather than static, preventive
paradigm —especially important in an era where
climate variability is increasing the frequency of
triggering exposures [41].

Resource Allocation and Public Health Policy

Beyond individual care, climate-informed
autoimmune-disease models offer tremendous value
for public-health planning and resource allocation. If a
region is predicted to experience a cluster of exposures
(e.g., heatwave followed by high ozone/pollution days)
that historically drive increased autoimmune flare-ups,
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then the local health system can pre-position resources:
staffing for rheumatology clinics, alerting primary-care
networks, and ensuring diagnostic capacity is ramped
up. The broader literature on climate-sensitive health
risk emphasises that detection and prediction of
environmental-health hotspots is key to resilience [42].
In policy terms, aggregated outputs from many
individuals” risk-scores could inform zoning,
heat-mitigation programmes, and environmental
health regulation — by linking climate stressors to

disease-burden in actionable models, health policy can
move from reactive to anticipatory.

In sum, the integration of climate data into
predictive modelling for autoimmune diseases
promises to shift practice in three interlinked domains:
personalised  risk  stratification,
preventive action and system-level planning. The
challenge will be ensuring the models are robust,
interpretable and ethically deployed so that they serve

time-sensitive

individuals equitably and enhance public-health
resilience in a warming world.

Table 2: Framework for Integrating Climate and Health Data in Predictive Modeling for Autoimmune Disease

Description

Risk
Stage Data Sources / Processes
1. Data Acquisition Electronic
(EHRs),

Health  Records | These data sources provide
Climate
Satellite Imagery

Sensors, | crucial health, environmental,
and geographical information.

Engineering
features

2. Data Preprocessing & Feature | Integration and transformation | Raw data is processed, cleaned,
of raw data into meaningful [ and transformed into usable

features, e.g. cumulative

exposure.

3. Integrated Dataset

Merged  dataset
health and climate data

combining | Data from different sources are
fused into one cohesive dataset,
ready for machine learning.

4. Machine Learning Model

(SVM), etc.)

ML algorithms (e.g.,, Random | The integrated dataset is fed into
Forest, Support Vector Machine | a machine learning model to

predict disease risk.

5. Predictive Output Individual

Risk Score (e.g., | The model generates a predictive
likelihood of flare)

output that assesses the
individual’s risk level for disease.

Ethical Considerations and Future Directions

As the field of predictive modelling for
climate-sensitive autoimmune diseases moves forward,
itis crucial to hold a mirror up to the ethical dimensions
and to chart a responsible path for future research. The
interplay between sensitive health data, complex
machine learning frameworks and the broader
pathogenic role of climate exposures demands a
reflexive mindset.

Firstly, any model that integrates health records
with granular climate and geolocation data must
grapple with data privacy and security in a rigorous
way. When clinicians or researchers merge
individual-level EHRs with spatial-temporal grids of
climate or pollutant exposure, the potential to

inadvertently re-identify individuals or expose
sensitive location histories becomes real. Literature on
Al-driven healthcare emphasises that patient consent,
data ownership, secure transmission and storage
protocols are non-negotiable. Federated learning and
differential privacy techniques offer promise, but they
are neither universal nor fool-proof [43]. Beyond
technical solutions, equity matters: those living in
marginalized communities may be less protected by
data governance frameworks, raising justice and
fairness concerns. If risk-scores derived from
climate-linked ML models are misused (for insurance,
employment, or discrimination) the very promise of
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personalized prevention could flip into a new axis of
inequality.

Secondly, model explainability and trust are at
the heart of clinical acceptance and ethical deployment.
Building a high-accuracy algorithm is only half the
battle; the clinician and ultimately the patient must
understand, at least in part, why a risk assessment was
made. “Black box” models, which amalgamate
hundreds of features (clinical, genomic, climate) into an
opaque output, increase the likelihood of scepticism or
outright rejection in practice. Reviews in medical Al
stress that explainable Al (XAI), domain-adaptive
transfer learning and transparency are key to safe
deployment [44]. In our climate-informed autoimmune
context, it means that the feature “72-day heatwave
exposure + UV index>8" should map coherently to
immune system activation in clinician-familiar
language. If a model says “High risk” without linking
back to interpretable biological or environmental logic,
trust will erode. Moreover, model failures must be
auditable, and governance frameworks should ensure
fairness across different geographies, socio-economic
strata and climate zones.

Thirdly, turning to future directions, the research
agenda needs expansion and deepening. There is a clear
need for large-scale, prospective studies that follow
cohorts over time, capturing not only clinical and
genomic data but detailed climate- and
environment-exposure histories. While retrospective
modelling is useful, true validation of climate-informed
Conclusion

Integrating climate data into predictive models
for autoimmune diseases offers transformative
potential for early risk stratification and personalized
interventions. While the approach promises more
precise prevention strategies, challenges in data fusion,
ethical considerations, and model explainability
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