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Abstract:  

Chronic diseases remain a leading cause of global mortality, underscoring the need for 

developing reliable models that predict mortality prediction to guide individualized treat-

ments and optimize resource allocation. This methodological note presents a reproducible 

framework for predicting one-year mortality in chronic disease patients using large-scale 

administrative healthcare data. The approach employs retrospective cohort design, year-

specific subcohorts, and a stratified 5-fold cross-validation using a broad range of machine 

learning models. Performance is assessed with multiple metrics, including AUC, sensitiv-

ity, specificity, and balanced accuracy, to account for class imbalance. Model interpretabil-

ity is enhanced through SHapley Additive exPlanations (SHAP), enabling identification of 

key mortality predictors and their directional impact. The proposed framework is general 

and can be applied to different chronic diseases. It has already been successfully demon-

strated in nationwide cohorts of patients with diabetes mellitus and chronic viral hepatitis 

in Kazakhstan, achieving AUC values of 0.74–0.80, comparable to international bench-

marks despite relying on administrative data alone. The method is scalable and adaptable, 

allowing integration of laboratory and clinical data with feature selection to address high-

dimensionality challenges. Its generalizability and clinical relevance, however, should be 

validated in practice using enriched datasets across additional chronic diseases and diverse 

populations. 
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Introduction 

Chronic diseases pose a significant challenge to 

global public health due to their prolonged duration, 

slow progression, and high mortality rates. Despite on-

going improvements in medical care and public aware-

ness, mortality rates for such diseases remain high. Ac-

cording to the World Health Organization (WHO), 

chronic diseases were responsible for 43 million deaths 

in 2021, which is approximately 75% of global mortal-

ity, excluding those attributable to the COVID-19 pan-

demic [1]. 

Given the prolonged nature and relatively pre-

dictable progression of chronic diseases, one-year mor-

tality prediction is especially valuable. Longer-term 

predictions, such as predicting 3-, 5-, 8-year mortality, 

tend to have lower accuracy and sensitivity due to in-

creased uncertainty from disease trajectory change and 

external factors. In contrast, one-year mortality is an op-

timal choice, which provides predictive reliability and 

clinical utility. This shorter timeframe enables health 

professionals to develop individualized treatment strat-

egies, make effective resource allocation and implement 

preventive measures in time. In this context, computa-

tional methods, especially machine learning (ML) mod-

els, have proven to be highly effective in accurately pre-

dicting mortality outcomes [2, 3]. 

The following methodological approach provides 

a clear and reproducible framework for predicting one-

year mortality among patients with chronic diseases us-

ing large-scale administrative data. While the proposed 

framework was successfully implemented and vali-

dated on diabetes mellitus and chronic viral hepatitis 

patients using administrative data alone [4, 5]; the ap-

proach itself is not restricted to these conditions and can 

be generalized to other chronic diseases. Furthermore, 

it can be integrated with clinical notes, laboratory and 

imaging data where available. When enriched adminis-

trative data is available, the framework should be mod-

ified by introducing feature selection to address high-

dimensionality challenges. This flexibility ensures that 

the approach can adapt to different data environments 

while maintaining methodological consistency. None-

theless, its broader generalizability and clinical rele-

vance should be validated in practice using enriched 

datasets across additional chronic diseases and diverse 

populations. 

Study Design and Cohort Definition

The proposed method adopts a retrospective co-

hort study design using administrative healthcare data 

[6]. While a complete, definitive list of all chronic dis-

eases does not exist, the WHO identifies four key cate-

gories: 1) cardiovascular diseases (e.g., heart disease, 

stroke, and hypertension); 2) cancer; 3) diabetes; and 4) 

chronic respiratory diseases (e.g., chronic obstructive 

pulmonary disease, asthma) [1]. U.S. agencies such as 

National Institutes of Health (NIH) [7] and Department 

of Health and Human Services (HHS) [8] apply a 

broader definition that also includes conditions like 

HIV, chronic kidney disease, and chronic viral hepatitis. 

Patients diagnosed with chronic disease can be 

identified using the International Classification of Dis-

eases 10th Revision (ICD-10) codes relevant to that spe-

cific disease. The dataset must undergo preprocessing 

to merge different registries, eliminate duplicate rec-

ords, and form a comprehensive patient cohort. Clinical 

and laboratory data can be incorporated where availa-

ble, enhancing predictive accuracy. 

To reflect the temporal aspect of chronic diseases, 

the dataset is divided into distinct year-specific sub-co-

horts. For each observation year, patients who died be-

fore the start of that year or who were diagnosed within 

the year are excluded. This approach ensures that only 

patients with complete clinical data and confirmed sur-

vival status at the beginning of the observation period 

are included. 

Figure 1 depicts six types of patient groups in a 

typical dataset. A triangle represents the date of disease 

diagnosis, while a circle represents the exit date, which 

indicates the patient’s death. For illustration, we select 

the third year of observation (red). The subcohort for 

the third year consists of two patient groups: 

• Case group – patients diagnosed before 

the beginning of the third year who died 

during that year. 

• Control group – patients diagnosed be-

fore the beginning of the third year but 

who remained alive during that year 

(similar to cases 2 and 4, which are also 

highlighted by blue lines and markers). 
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Figure 1. Description of subcohort selection 

Patients who died before the start of the third year 

were excluded from the subcohort (e.g., case 3). Simi-

larly, patients who were newly diagnosed during the 

third year were also excluded (e.g., cases 5 and 6). Only 

patients with available clinical information who were 

alive up to the end of the second year were included. 

Therefore, we selected subcohorts for the third year and 

predicted one-year mortality for all patients. It is also 

important to note that diseases may occur much earlier 

than the recorded diagnosis date.  

Model Development and Validation  

Selecting appropriate predictive models is critical 

for obtaining reliable mortality predictions. In our 

framework, we evaluate a diverse range of algorithms 

commonly used in health outcome prediction, includ-

ing linear models, such as Logistic Regression (LR) [9] 

and Support Vector Machines with linear kernel (SVM) 

[10], Gaussian Naive Bayes (GNB) [11], K-Nearest 

Neighbors (KNN) [11], Discriminant Analysis (LDA, 

QDA) [12], Ensemble methods such as Random Forest 

(RF) [13], LightGBM (LGB) [14], XGBoost (XGB) [15], 

AdaBoost (ADB) [16], and Gradient Boosted Regression 

Trees (GBRT) [17].  

The choice of these models can be rationalized based on 

their proven efficacy in prior studies predicting chronic 

disease outcomes, mortality, or similar health-related 

events [2, 3, 18-20]. 

Each year-specific cohort is initially divided into 

a training set (80%) and a held-out test set (20%) using 

a stratified random split to preserve class distribution. 

Model selection and tuning are conducted via grid 

search with stratified 5-fold cross-validation: 

1. The training set is split into five equally 

sized folds using a stratified random 

split, maintaining a class label ratio across 

each fold to mitigate imbalance. 

2. In each iteration, one fold is set as the val-

idation set, and the remaining four folds 

are combined as the training set. 

3. Standardization is applied based on the 

training folds to ensure consistent scal-

ing. 

4. Models are trained on these folds using 

the predefined set of hyperparameters 

and evaluated on the validation fold us-

ing the Area Under the ROC Curve 

(AUC), a threshold-independent metric 

suited for imbalanced data. 

5. This procedure repeats for every hy-

perparameter combination across all 5 

folds, ensuring robust validation. 

6. The optimal model is selected based on 

the highest average AUC score across the 

5 folds 

7. The final year-specific model is retrained 

on the entire training set and evaluated 

on the held-out test set.  
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Figure 2. Stratified 5-fold Cross-Validation 

To mitigate overoptimism associated with the use 

of traditional accuracy as the primary performance  

metric in the presence of class imbalance, we report a 

range of performance metrics, including precision, 

specificity, sensitivity, balanced accuracy (BA), geomet-

ric mean of sensitivity and specificity (G-mean) and 

AUC. This comprehensive evaluation provides a com-

prehensive picture of the model performance, particu-

larly when class imbalance is present. 

picture of the model performance, particularly 

when class imbalance is present. 

 

Explainability via SHAP Analysis 

Understanding the underlying decision processes 

of ML models is critical in healthcare applications. To 

address this, we employ SHapley Additive exPlana-

tions (SHAP) [21] to assess the contribution of each fea-

ture to model predictions. SHAP analysis achieves two 

primary objectives: 

1. Feature Importance: assess the contribu-

tion of each predictor to the model’s out-

put.  

2. Directional Impact: understand whether 

a feature increases or decreases mortality 

risk. 

A SHAP value can be either positive or negative, 

indicating a corresponding positive or negative contri-

bution to the model’s prediction. In our case, a positive 

SHAP value for a predictor indicates that the predictor 

contributes to a higher probability of one-year mortal-

ity, while a negative value contributes toward survival. 

Given value can push the predicted outcome closer to 1 

or 0, which indicates a higher or lower probability of 
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one-year mortality, respectively. Not only does SHAP 

analysis help quantify the importance of features, but it 

also shows the direction of their influence on the out-

come. This interpretability is crucial in supporting data-

driven decision-making and improving communication 

between clinicians and patients. 

Discussion 

This is the first ML/AI based study in Kazakhstan 

as well as in Central Asia, which was conducted using 

big nationwide administrative healthcare data. The pro-

posed framework was successfully implemented to pre-

dict one-year mortality in diabetes mellitus and chronic 

viral hepatitis patients using large-scale administrative 

data in Kazakhstan [4, 5]. These disease groups serve as 

demonstrations, but the framework is designed to be 

general and adaptable to additional chronic diseases.  

The developed models using the proposed frame-

work showed AUC values between 0.74 and 0.80, which 

are considered ‘fair’ and approaching ‘good’ as per the 

standard diagnostic metrics [22]. These studies indicate 

both feasibility and robustness of our approach. Im-

portantly, the proposed framework was helpful in iden-

tifying key mortality predictors consistent with prior 

literature, such as age, sex, disease type and duration of 

disease, reinforcing the framework’s clinical relevance 

[23-26]. To illustrate this, Figure 3 shows SHAP analysis 

for the 2019-specific cohort of diabetes patients. The 

mean absolute SHAP values (Figure 3b) show that age, 

duration of diabetes and sex are the three top most im-

portant predictors (the longer bar shows a more im-

portant feature). In Figure 3a, reed dots with positive 

SHAP values indicate that higher feature values (e.g. 

older age or longer disease duration) increase the pre-

dicted risk of one-year mortality, whereas blue dots 

with positive SHAP values indicate an inverse relation-

ship. 

 
Figure 3. SHAP analysis of 2019-specific cohort 

of diabetes patients: (a) SHAP summary dot plot for 

the 2019-specific cohort. (b) The mean absolute SHAP 

value bar plots for the 2019-specific cohort. Reproduced 

from [4] under a Creative Commons Attribution 4.0 Li-

cense. 

Comparisons with international studies further 

highlight the strengths and limitations of our approach. 

A Chinese study predicting one-year mortality in older 

patients with coronary artery disease and impaired glu-

cose tolerance or diabetes reported an AUC of 0.83 us-

ing GB [27]. In comparison, our study on predicting 

one-year mortality in patients with diabetes achieved 

slightly lower but comparable performance (AUC 0.78-

0.80), despite being based solely on administrative data 

without laboratory data or medications use. However, 

the Chinese study was built on a relatively small set of 

451 patients, whereas our model was trained on a larger 

nationwide cohort of 472,950 patients, offering general-

izability. 

Similar evidence exists for chronic viral hepatitis. 

In a study from Sultan Qaboos University Hospital 

(SQUH), LR models incorporating laboratory markers, 

genotype, and coinfections reached an AUC of 0.93 for 

one-year mortality prediction of patients with chronic 

viral hepatitis C [28]. Our Kazakhstan hepatitis models 

showed slightly lower results (AUC 0.74-0.80), which is 

expected given the absence of laboratory and treatment 

data. Similar to the Chinese study on diabetes, the study 

from SQUH was a single-center study with 702 patients, 

whereas our study on hepatitis was developed using 

large-scale administrative data, enhancing generaliza-

bility. 
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Limitations 

This methodological note has several limitations. 

Results suggest that augmenting administrative data 

with laboratory  measures and treatment information 

could potentially improve predictive performance. 

However, augmenting administrative data by labora-

tory data and clinical notes could introduce new statis-

tical challenges due to high-dimensionality of data [11]. 

Therefore, the utility of appropriate feature selection 

techniques would seem crucial to mitigate those chal-

lenges. Another limitation is that suggested one year 

prediction model also may mediated and/or affected by 

unexpected life-threatening events like sudden death, 

CV-events, injuries and may differ than natural disease 

progression. Although, we considered the missing data 

and applied median imputation for numerical variables 

and mode imputations for categorical data, these sim-

ple approaches may not fully capture the underlying 

data patterns, and more advanced methods, such as 

multivariate imputation or k-nearest neighbors imputa-

tion, could provide greater robustness. Despite these 

limitations, the framework itself is designed to be scal-

able, reproducible, and adaptable, while its perfor-

mance will need to be confirmed in enriched datasets 

across additional chronic diseases and  diverse popu-

lations beyond Kazakhstan. 

 

Conclusion
We propose a scalable and adaptable framework 

for predicting one-year mortality in chronic disease pa-

tients using large-scale administrative data. This ap-

proach introduces subcohort definition, model devel-

opment, and comprehensive performance evaluation, 

ensuring both methodological robustness and clinical 

relevance. The inclusion of explainability via SHAP 

analysis helps healthcare professionals to understand 

not only which factors influence predictions but also the 

direction of their impact. Applied to real-world datasets 

in Kazakhstan, the framework achieved fair-to-good 

predictive performance, demonstrating its feasibility 

and reliability in practical settings. 

While the framework performed well with ad-

ministrative data alone, its design allows for integration 

with enriched datasets, such as laboratory results and 

clinical notes, which could potentially improve predic-

tive accuracy. Future applications should incorporate 

feature selection techniques when handling high-di-

mensional data to maintain computational efficiency 

and generalizability. In addition, more advanced impu-

tation techniques for handling missing data need to be 

considered in the future. Lastly, country-specific data 

quality highlights the need for external validation and 

application across diverse populations and disease 

groups. Overall, this methodology provides healthcare 

systems with a practical and interpretable tool for early 

mortality risk identification, supporting better-in-

formed clinical decisions and targeted interventions. 
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