Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges
Epidemiology and Health Data Insights, 1(6), 2025, ehdi023, https://doi.org/10.63946/ehdi/17470
Publication date: Dec 01, 2025
ABSTRACT
Artificial intelligence (AI) is increasingly shaping modern healthcare by enabling data-driven decision-making, improving diagnostic accuracy, and optimizing resource use. In transfusion medicine, AI offers substantial opportunities to enhance donor management, automate blood typing and compatibility testing, strengthen inventory forecasting, and support early detection of transfusion-related complications. This review summarizes current applications of AI technologies—including machine learning, deep learning, natural language processing, computer vision, and predictive analytics—and evaluates their impact across laboratory, clinical, and operational domains. Emerging innovations such as precision transfusion, patient digital twins, multi-omics integration, and federated learning highlight AI’s potential to advance personalized and interconnected transfusion practices. However, successful implementation requires addressing challenges related to data heterogeneity, algorithmic bias, privacy and ethical considerations, and evolving regulatory requirements. Establishing rigorous validation standards and promoting interdisciplinary collaboration will be essential to ensure that AI improves the safety, efficiency, and sustainability of transfusion medicine.
KEYWORDS
CITATION (Vancouver)
Oriaku I, Okechukwu O, Okeoma OI, Gab-Obinna C, Bala JI, Adejumobi AM, et al. Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges. Epidemiology and Health Data Insights. 2025;1(6):ehdi023. https://doi.org/10.63946/ehdi/17470
APA
Oriaku, I., Okechukwu, O., Okeoma, O. I., Gab-Obinna, C., Bala, J. I., Adejumobi, A. M., & Awoyomi, O. O. (2025). Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges. Epidemiology and Health Data Insights, 1(6), ehdi023. https://doi.org/10.63946/ehdi/17470
Harvard
Oriaku, I., Okechukwu, O., Okeoma, O. I., Gab-Obinna, C., Bala, J. I., Adejumobi, A. M., and Awoyomi, O. O. (2025). Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges. Epidemiology and Health Data Insights, 1(6), ehdi023. https://doi.org/10.63946/ehdi/17470
AMA
Oriaku I, Okechukwu O, Okeoma OI, et al. Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges. Epidemiology and Health Data Insights. 2025;1(6), ehdi023. https://doi.org/10.63946/ehdi/17470
Chicago
Oriaku, Ikemefula, Oluchi Okechukwu, Obiageri Ihuarulam Okeoma, Chidinma Gab-Obinna, Jazuli Isyaku Bala, Adeyinka Moyinoluwa Adejumobi, and Oluwabusayo Olufunke Awoyomi. "Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges". Epidemiology and Health Data Insights 2025 1 no. 6 (2025): ehdi023. https://doi.org/10.63946/ehdi/17470
MLA
Oriaku, Ikemefula et al. "Artificial Intelligence in Transfusion Medicine: Current Applications, Opportunities, and Challenges". Epidemiology and Health Data Insights, vol. 1, no. 6, 2025, ehdi023. https://doi.org/10.63946/ehdi/17470
REFERENCES
- Yadav SK, Hussein G, Liu B, Vojjala N, Warsame M, Labban ME, et al. A Contemporary Review of Blood Transfusion in Critically Ill Patients. Medicina [Internet]. 2024 Jul 30;60(8). Available from: https://doi.org/10.3390/medicina60081247
- Knowles C, Raitt J. Blood transfusion – moving from what to how. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2025 Jul 6;33(1):118. Available from: https://doi.org/10.1186/s13049-025-01300-9
- Lotterman S, Sharma S. Blood Transfusion. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 [cited 2025 Nov 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK499824/
- Coccolini F, Shander A, Ceresoli M, Moore E, Tian B, Parini D, et al. Strategies to prevent blood loss and reduce transfusion in emergency general surgery, WSES-AAST consensus paper. World Journal of Emergency Surgery. 2024 Jul 16;19(1):26. Available from: https://doi.org/10.1186/s13017-024-00553-8
- Razzaq K, Shah M, Razzaq K, Shah M. Machine Learning and Deep Learning Paradigms: From Techniques to Practical Applications and Research Frontiers. Computers [Internet]. 2025 Mar 5;14(3). Available from: https://doi.org/10.3390/computers14030093
- Nagpure N, Raut H, Kamble S, Rasala T. Redefining Preclinical Research Paradigms: AI-Driven Drug Discovery as a Transformative Approach to Accelerate Innovation, Improve Predictive Accuracy, and Reduce Reliance on Animal Testing. Journal of Drug Delivery and Therapeutics. 2025 Oct 15;15(10):115–28. Available from: https://doi.org/10.22270/jddt.v15i10.6804
- Mohamed N. Artificial intelligence and machine learning in cybersecurity: a deep dive into state-of-the-art techniques and future paradigms. Knowl Inf Syst. 2025 Aug 1;67(8):6969–7055. Available from: https://doi.org/10.1007/s10115-025-02238-5
- Animashaun TA, Sunday O, Ogunleye E, Agbahiwe OK, Afolayan ON, Okpoko OA, et al. AI-Powered Digital Twin Platforms for Next-Generation Structural Health Monitoring: From Concept to Intelligent Decision-Making. Journal of Engineering Research and Reports. 2025 Sep 22;27(10):12–37. Available from: https://doi.org/10.9734/jerr/2025/v27i101344
- Cognasse F, Avril S, Fleck JL, Hamzeh-Cognasse H. Artificial Intelligence in transfusion medicine: a paradigm shift on the horizon. Blood Transfusion. 2025 Aug 4;23(6):558. Available from: https://doi.org/10.2450/bloodtransfus.777
- Barzilai M, Cohen O. AI Applications in Transfusion Medicine: Opportunities, Challenges, and Future Directions. Acta Haematol. 2025 May 9;1–11. Available from: https://doi.org/10.1159/000542158
- Okayo OD, Panwal NE, Ihuarulam OO, Nzunde MS, Nyimwadang FA, Oladosu TA, et al. Transforming Medical Laboratory Science with Vision-Language Models: A Focus on Microscopy in Microbiology, Hematology, and Histopathology. Oncology, Nuclear Medicine, and Transplantology. 2025 Oct 21;1(2):onmt008. Available from: https://doi.org/10.1093/onmt/onmt008
- Owess MM, Owda AY, Owda M, Massad S, Owess MM, Owda AY, et al. Supervised Machine Learning-Based Models for Predicting Raised Blood Sugar. International Journal of Environmental Research and Public Health [Internet]. 2024 Jun 26;21(7). Available from: https://doi.org/10.3390/ijerph21070840
- Jacokes Z, Adoremos I, Hussain AR, Newman BT, Pelphrey KA, Van Horn JD. Unsupervised Dimensionality Reduction Techniques for the Assessment of ASD Biomarkers. Pac Symp Biocomput. 2025;30:614–30. Available from: https://doi.org/10.1142/9789811283780_0056
- Wu Q, Han J, Yan Y, Kuo YH, Shen ZJM. Reinforcement learning for healthcare operations management: methodological framework, recent developments, and future research directions. Health Care Manag Sci. 2025;28(2):298–333. Available from: https://doi.org/10.1007/s10729-024-09685-4
- Li M, Jiang Y, Zhang Y, Zhu H. Medical image analysis using deep learning algorithms. Front Public Health. 2023 Nov 7;11:1273253. Available from: https://doi.org/10.3389/fpubh.2023.1273253
- Mienye ID, Swart TG, Mienye ID, Swart TG. A Comprehensive Review of Deep Learning: Architectures, Recent Advances, and Applications. Information [Internet]. 2024 Nov 26;15(12). Available from: https://doi.org/10.3390/info15120755
- Kim JC, Chung K, Kim JC, Chung K. Recurrent Neural Network-Based Multimodal Deep Learning for Estimating Missing Values in Healthcare. Applied Sciences [Internet]. 2022 Jul 25;12(15). Available from: https://doi.org/10.3390/app12157477
- Wieland-Jorna Y, van Kooten D, Verheij RA, de Man Y, Francke AL, Oosterveld-Vlug MG. Natural language processing systems for extracting information from electronic health records about activities of daily living. A systematic review. JAMIA Open. 2024 May 24;7(2):ooae044. Available from: https://doi.org/10.1093/jamiaopen/ooae044
- Golder S, Xu D, O’Connor K, Wang Y, Batra M, Hernandez GG. Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review. Drug Saf. 2025;48(4):321–37. Available from: https://doi.org/10.1007/s40264-024-01486-6
- Lopes MGM, Recktenwald SM, Simionato G, Eichler H, Wagner C, Quint S, et al. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother. 2023 May 25;50(3):163–73. Available from: https://doi.org/10.1159/000530656
- Campos-Medina M, Blumer A, Kraus-Füreder P, Mayrhofer-Reinhartshuber M, Kainz P, Schmid JA, et al. AI-Enhanced Blood Cell Recognition and Analysis: Advancing Traditional Microscopy with the Web-Based Platform IKOSA. Journal of Molecular Pathology. 2024 Jan 24;5(1):28–44. Available from: https://doi.org/10.3390/jmp5010003
- Lawal OP, Igwe EP, Olosunde A, Chisom EP, Okeh DU, Olowookere AK, et al. Integrating Real-Time Data and Machine Learning in Predicting Infectious Disease Outbreaks: Enhancing Response Strategies in Sub-Saharan Africa. Asian Journal of Microbiology and Biotechnology. 2025 May;10(1):147–63. Available from: https://doi.org/10.53568/AJMB2025-10-01-15
- Dewaker V, Morya VK, Kim YH, Park ST, Kim HS, Koh YH. Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomarker Research. 2025 Mar 29;13(1):52. Available from: https://doi.org/10.1186/s40364-025-00641-0
- Gedefaw L, Liu CF, Ip RKL, Tse HF, Yeung MHY, Yip SP, et al. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells. 2023 Jun 30;12(13):1755. Available from: https://doi.org/10.3390/cells12131755
- Elmir WB, Hemmak A, Senouci B, Elmir WB, Hemmak A, Senouci B. Smart Platform for Data Blood Bank Management: Forecasting Demand in Blood Supply Chain Using Machine Learning. Information [Internet]. 2023 Jan 4;14(1). Available from: https://doi.org/10.3390/info14010031
- Zhang Y, He L, Zheng J, Zhang Y, He L, Zheng J. A Deep Reinforcement Learning-Based Dynamic Replenishment Approach for Multi-Echelon Inventory Considering Cost Optimization. Electronics [Internet]. 2024 Dec 26;14(1). Available from: https://doi.org/10.3390/electronics14010066
- Lawal O, Oyebamiji HO, Kelenna IJ, Chioma FJ, Oyefeso E, Adeyemi BI, et al. A Review on Usage of Digital Health Literacy to Combat Antibiotic Misuse and Misinformation in Nigeria: Review Article. Journal of Pharma Insights and Research. 2025 Apr 5;3(2):258–69. Available from: https://doi.org/10.69945/jopir.2025.3.2.258-269
- Naouali S, El Othmani O. AI-Driven Automated Blood Cell Anomaly Detection: Enhancing Diagnostics and Telehealth in Hematology. J Imaging. 2025 May 16;11(5):157. Available from: https://doi.org/10.3390/jimaging11050157
- Shin Y, Lee M, Lee Y, Kim K, Kim T, Shin Y, et al. Artificial Intelligence-Powered Quality Assurance: Transforming Diagnostics, Surgery, and Patient Care—Innovations, Limitations, and Future Directions. Life [Internet]. 2025 Apr 15;15(4). Available from: https://doi.org/10.3390/life15040654
- ShojaeiBaghini M, Ghaemi MM, Ahmadipour A. Artificial intelligence in the identification and prediction of adverse transfusion reactions(ATRs) and implications for clinical management: a systematic review of models and applications. BMC Med Inform Decis Mak. 2025 Oct 28;25:396. Available from: https://doi.org/10.1186/s12911-025-02852-x
- Park I, Jang WS, Lim CS, Kim J, Park I, Jang WS, et al. Evaluation of Pre-Transfusion Crossmatch Test Using Microscanner C3. Diagnostics [Internet]. 2024 Jun 11;14(12). Available from: https://doi.org/10.3390/diagnostics14121231
- Saratkar SY, Langote M, Kumar P, Gote P, Weerarathna IN, Mishra GV. Digital twin for personalized medicine development. Front Digit Health. 2025 Aug 7;7:1583466. Available from: https://doi.org/10.3389/fdgth.2025.1583466
- Enabulele ABO, Eleweke CC, Okechukwu O, Akanbi OO, Majesty C. A Strategic Project Management Framework for Implementing Patient-Centered Digital Health Record Systems to Improve Chronic Disease Outcomes in the United States. Journal of Sustainable Research and Development. 2025 Nov 13;1(2):55–67. Available from: https://doi.org/10.69793/01.01.2025.055067
- Ikwelle TA, Ihim AC, Ozuruoke DFN, Obi PC, Obi CU, Onuora IJ, et al. Multi-Omics Integration in Personalized Medicine: Advancing Laboratory Diagnostics and Precision Therapeutics in the Era of Individualized Healthcare. Journal of Drug Delivery and Therapeutics. 2025 May 15;15(5):132–42. Available from: https://doi.org/10.22270/jddt.v15i5.6779
- Zhan S, Huang L, Luo G, Zheng S, Gao Z, Chao HC, et al. A Review on Federated Learning Architectures for Privacy-Preserving AI: Lightweight and Secure Cloud–Edge–End Collaboration. Electronics [Internet]. 2025 Jun 19;14(13). Available from: https://doi.org/10.3390/electronics14132512
- Lin M, Guo J, Gu Z, Tang W, Tao H, You S, et al. Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. Journal of Translational Medicine. 2025 Apr 2;23(1):388. Available from: https://doi.org/10.1186/s12967-025-05806-1
- Ahangar MN, Farhat ZA, Sivanathan A, Ahangar MN, Farhat ZA, Sivanathan A. AI Trustworthiness in Manufacturing: Challenges, Toolkits, and the Path to Industry 5.0. Sensors [Internet]. 2025 Jul 10;25(14). Available from: https://doi.org/10.3390/s25144357
- Singh R, Zhou K, Auclair JR. Reimagining drug regulation in the age of AI: a framework for the AI-enabled Ecosystem for Therapeutics. Front Med (Lausanne). 2025 Oct 16;12:1679611. Available from: https://doi.org/10.3389/fmed.2025.1679611
- Rabbani SA, El-Tanani M, Sharma S, Rabbani SS, El-Tanani Y, Kumar R, et al. Generative Artificial Intelligence in Healthcare: Applications, Implementation Challenges, and Future Directions. BioMedInformatics [Internet]. 2025 Jul 6;5(3). Available from: https://doi.org/10.3390/biomedinformatics5030037
- Singh MP, Keche YN. Ethical Integration of Artificial Intelligence in Healthcare: Narrative Review of Global Challenges and Strategic Solutions. Cureus. 2025;17(5):e84804. Available from: https://doi.org/10.7759/cureus.84804
- Abbas Q, Jeong W, Lee SW. Explainable AI in Clinical Decision Support Systems: A Meta-Analysis of Methods, Applications, and Usability Challenges. Healthcare (Basel). 2025 Aug 29;13(17):2154. Available from: https://doi.org/10.3390/healthcare13172154
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.