Diabetic foot ulcers (DFUs) are among the most severe complications of diabetes mellitus, contributing to infection, limb loss, and premature mortality. In Africa, the rising prevalence of diabetes, combined with limited laboratory capacity and frequent empirical antibiotic use, has intensified the problem of multidrug-resistant (MDR) infections. Understanding the microbial spectrum and associated outcomes is critical for guiding evidence-based management. This review systematically synthesizes data on microbial etiologies, antimicrobial-resistance patterns, and clinical outcomes of DFUs in African populations. Methods: Following PRISMA 2020 guidelines, PubMed, Scopus, Embase, Web of Science, African Journals Online, and Google Scholar were searched for studies published between 2000 and 2025. Eligible studies included adults with DFUs in African settings that reported bacterial isolates, resistance profiles, or clinical outcomes. Two reviewers independently screened and extracted data, and study quality was appraised using the Joanna Briggs Institute checklist. Data were synthesized narratively and summarized using descriptive statistics. Sixteen verified studies from ten African countries, encompassing approximately 2,700 participants, were included. Staphylococcus aureus and Pseudomonas aeruginosa were the predominant isolates, followed by Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. MDR prevalence was high, with methicillin-resistant S. aureus (MRSA) detected in 25–45% of isolates and extended-spectrum β-lactamase (ESBL)–producing Enterobacterales in 30–50%. Among studies reporting outcomes, amputation rates ranged from 15% to 38% and mortality from 7% to 16%, with poorer outcomes in MDR infections. Considerable heterogeneity existed in sampling and testing methods across studies. Saureus remains the dominant pathogen in African DFUs, but AMR is pervasive across bacterial species. Strengthening diagnostic laboratory systems, infection-control practices, and antimicrobial stewardship (alongside integrated diabetic foot care) is essential to reduce preventable amputations, mortality, and the continent’s growing burden of drug-resistant infections.
Keywords: Diabetic
Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance
Epidemiology and Health Data Insights, 1(6), 2025, ehdi022, https://doi.org/10.63946/ehdi/17471
Publication date: Dec 01, 2025
ABSTRACT
KEYWORDS
Diabetic Foot Ulcer Antimicrobial Resistance Africa Staphylococcus Aureus Pseu-domonas Aeruginosa Multidrug Resistance Clinical Outcomes
CITATION (Vancouver)
Nwosu PC, Egwuatu EC, Wright AKA, Ebiala FI, Yaro GO, Sone PE, et al. Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance. Epidemiology and Health Data Insights. 2025;1(6):ehdi022. https://doi.org/10.63946/ehdi/17471
APA
Nwosu, P. C., Egwuatu, E. C., Wright, A. K.-A., Ebiala, F. I., Yaro, G. O., Sone, P. E., Ayo-ige, A. B., & Olokede, E. U. (2025). Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance. Epidemiology and Health Data Insights, 1(6), ehdi022. https://doi.org/10.63946/ehdi/17471
Harvard
Nwosu, P. C., Egwuatu, E. C., Wright, A. K.-A., Ebiala, F. I., Yaro, G. O., Sone, P. E., . . . Olokede, E. U. (2025). Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance. Epidemiology and Health Data Insights, 1(6), ehdi022. https://doi.org/10.63946/ehdi/17471
AMA
Nwosu PC, Egwuatu EC, Wright AKA, et al. Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance. Epidemiology and Health Data Insights. 2025;1(6), ehdi022. https://doi.org/10.63946/ehdi/17471
Chicago
Nwosu, Patrick Chinazam, Emmanuel Cherechi Egwuatu, Alliah Kris-Ann Wright, Fortune Itoje Ebiala, Gloria Ogbeyi Yaro, Precious Esong Sone, Ayodele Blessing Ayo-ige, and Esther Uyoyooghene Olokede. "Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance". Epidemiology and Health Data Insights 2025 1 no. 6 (2025): ehdi022. https://doi.org/10.63946/ehdi/17471
MLA
Nwosu, Patrick Chinazam et al. "Diabetic Foot Ulcers in Africa: A Systematic Review of Microbial Profiles and Clinical Outcomes in the Context of Multidrug Resistance". Epidemiology and Health Data Insights, vol. 1, no. 6, 2025, ehdi022. https://doi.org/10.63946/ehdi/17471
REFERENCES
- Abdou SM, Attia H. Aerobic bacteria isolated from diabetic foot ulcers and their antimicrobial susceptibility pattern in Alexandria, Egypt. Alex J Med. 2014;50(4):343-8. <a href="https://doi.org/10.1016/j.ajme.2014.03.003">https://doi.org/10.1016/j.ajme.2014.03.003</a>
- Abebe E, Aemiro A, Tegen D, et al. Bacterial isolates and antimicrobial susceptibility among diabetic foot ulcers at Jimma Medical Center, Ethiopia. Int J Microbiol. 2021;2021:6625753. <a href="https://doi.org/10.1155/2021/6625753">https://doi.org/10.1155/2021/6625753</a>
- Adem AM, Asefa F, Tadiwos Y, et al. Incidence of diabetic foot ulcer and its predictors among diabetes mellitus patients: A retrospective cohort study. Sci Rep. 2020;10:19362. <a href="https://doi.org/10.1038/s41598-020-76478-7">https://doi.org/10.1038/s41598-020-76478-7</a>
- Ameh S, Goh C, Milner SM, et al. Human wound and its burden: Updated compendium of cost and epidemiology. Adv Wound Care (New Rochelle). 2022;11(12):687-706. <a href="https://doi.org/10.1089/wound.2022.0049">https://doi.org/10.1089/wound.2022.0049</a>
- Anafo RB, Adomako E, Prah I, Egyir B. Methicillin-resistant Staphylococcus aureus from diabetic foot infections in Ghana: A prospective study. Antibiotics (Basel). 2021;10(5):548. <a href="https://doi.org/10.3390/antibiotics10050548">https://doi.org/10.3390/antibiotics10050548</a>
- Anyim O, Nwosu O, Ele PU, et al. Bacteriological profile and antimicrobial susceptibility of isolates from diabetic foot ulcers in a Nigerian tertiary hospital. J Med Lab Sci. 2019;29/30(1):34-42.
- Armstrong DG, Boulton AJM. Diabetic foot ulcers and their recurrence—An update. N Engl J Med. 2019;380(23):2307-9. <a href="https://doi.org/10.1056/NEJMe1905560">https://doi.org/10.1056/NEJMe1905560</a>
- Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376(24):2367-75. <a href="https://doi.org/10.1056/NEJMra1615439">https://doi.org/10.1056/NEJMra1615439</a>
- Atlaw A, Kebede HB, Abdela AA, Woldeamanuel Y. Bacterial isolates from diabetic foot ulcers and their antimicrobial resistance profile from Addis Ababa hospitals. Front Endocrinol (Lausanne). 2022;13:987487. <a href="https://doi.org/10.3389/fendo.2022.987487">https://doi.org/10.3389/fendo.2022.987487</a>
- Ben Ayed S, Koubaa M, Gargouri L, et al. Methicillin-resistant Staphylococcus aureus in diabetic foot infections in Tunisia. Tunis Med. 2016;94(1):27-31.
- Brenyah RC, Ephraim RKD, Bediako-Asare EJ, Asamoah J. Bacterial profile of diabetic foot ulcers at Komfo Anokye Teaching Hospital, Kumasi, Ghana. Br J Med Med Res. 2014;4(27):4501-10. <a href="https://doi.org/10.9734/BJMMR/2014/10608">https://doi.org/10.9734/BJMMR/2014/10608</a>
- Di Domenico EG, Farulla I, Prignano G, et al. Silver sulfadiazine eradicates antibiotic-tolerant Staphylococcus aureus and Pseudomonas aeruginosa biofilms in patients with infected diabetic foot ulcers. J Clin Med. 2020;9(12):3807. <a href="https://doi.org/10.3390/jcm9123807">https://doi.org/10.3390/jcm9123807</a>
- Dunyach-Remy C, Courtais-Coulon C, DeMattei C, et al. Staphylococcus aureus toxins and diabetic foot ulcers: Role in pathogenesis and interest in diagnosis. Toxins (Basel). 2016;8(7):209. <a href="https://doi.org/10.3390/toxins8070209">https://doi.org/10.3390/toxins8070209</a>
- El-Tantawy NL, El-Gendy A, Hassan R, et al. Bacteriological profile of diabetic foot infections and antibiotic susceptibility pattern in Benha, Egypt. Benha Med J. 2018;35(3):237-44.
- ElSayed NA, Aleppo G, Aroda VR, et al.; American Diabetes Association. Standards of Care in Diabetes—2023. Diabetes Care. 2023;46(Suppl 1):S1-S291. <a href="https://doi.org/10.2337/dc23-S002">https://doi.org/10.2337/dc23-S002</a>
- Gadepalli R, Dhawan B, Sreenivas V, et al. A review of diabetic foot infections in low- and middle-income countries: Microbiology and management. Diabetes Metab Syndr. 2020;14(6):1965-73. <a href="https://doi.org/10.1016/j.dsx.2020.10.015">https://doi.org/10.1016/j.dsx.2020.10.015</a>
- Hassan MA, Tamer TM, Rageh AA, et al. Microbiology and antimicrobial resistance profile of diabetic foot infections in low-resource settings: A narrative review. Int J Low Extrem Wounds. 2022;21(4):500-12. <a href="https://doi.org/10.1177/15347346211056245">https://doi.org/10.1177/15347346211056245</a>
- International Diabetes Federation. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: IDF; 2021. Available from: <a href="https://diabetesatlas.org">https://diabetesatlas.org</a>
- Lazzarini PA, Pacella RE, Armstrong DG, et al. Global epidemiology of diabetic foot disease and considerations for prevention. Diabetes Metab Res Rev. 2020;36(S1):e3263. <a href="https://doi.org/10.1002/dmrr.3263">https://doi.org/10.1002/dmrr.3263</a>
- Macdonald KE, Boeckh S, Stacey HJ, et al. Diabetic foot infections: A practical guide to management and microbiology. Clin Microbiol Infect. 2021;27(12):1700-9. <a href="https://doi.org/10.1016/j.cmi.2021.07.030">https://doi.org/10.1016/j.cmi.2021.07.030</a>
- Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. <a href="https://doi.org/10.1111/j.1469-0691.2011.03570.x">https://doi.org/10.1111/j.1469-0691.2011.03570.x</a>
- Makeri D, Odoki M, Eilu E, Agwu E. Update on prevalence and antimicrobial resistance of Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot ulcers in Africa: A systematic review and meta-analysis. Bull Natl Res Cent. 2023;47:145. <a href="https://doi.org/10.1186/s42269-023-01119-5">https://doi.org/10.1186/s42269-023-01119-5</a>
- Mekonnen AB, Yismaw MB, Gizachew ZM, et al. Predictors of poor outcomes among patients with infected diabetic foot ulcers: A systematic review. J Clin Pharm Ther. 2021;46(4):988-97. <a href="https://doi.org/10.1111/jcpt.13391">https://doi.org/10.1111/jcpt.13391</a>
- Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis. JBI; 2020. <a href="https://doi.org/10.46658/JBIMES-20-08">https://doi.org/10.46658/JBIMES-20-08</a>
- Mwachiro E, Wanjeri JW, Mureithi D, et al. Microbiology of infected diabetic foot ulcers at a Kenyan referral hospital. SAGE Open Med. 2022;10:20503121221112263. <a href="https://doi.org/10.1177/20503121221112263">https://doi.org/10.1177/20503121221112263</a>
- Nsagha DS, Kibu OD, Assob NJC, et al. Microbial profile of infected diabetic foot ulcers in Cameroon: A two-center study. Acta Sci Microbiol. 2022;5(10):11-9.
- Obeid M, El-Gendy A, Hassan R, et al. Bacteriology, biofilm formation, and antimicrobial susceptibility in Egyptian patients with diabetic foot infection. Egypt J Med Microbiol. 2018;27(2):1-10.
- Onyiriuka AN, Ifebi E. Empirical antibiotic use in diabetic foot infections in sub-Saharan Africa: Challenges and opportunities. Int J Low Extrem Wounds. 2022;21(3):273-81. <a href="https://doi.org/10.1177/15347346211024655">https://doi.org/10.1177/15347346211024655</a>
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. <a href="https://doi.org/10.1136/bmj.n71">https://doi.org/10.1136/bmj.n71</a>
- Patel S, Goldberg R, Mash R, Naidoo P. Microbiology and antimicrobial resistance profile in patients with diabetic foot sepsis at a central hospital in Johannesburg, South Africa. PLoS One. 2024;19(3):e0300304. <a href="https://doi.org/10.1371/journal.pone.0300304">https://doi.org/10.1371/journal.pone.0300304</a>
- Pouget C, Dunyach-Remy C, Pantel A, et al. Biofilms in diabetic foot ulcers: Significance and clinical relevance. Microorganisms. 2020;8(10):1580. <a href="https://doi.org/10.3390/microorganisms8101580">https://doi.org/10.3390/microorganisms8101580</a>
- Quazi S, Mlisana K, van Nierop W, et al. Bacterial profile and antimicrobial resistance in diabetic foot infections: South African cohort. Diagnostics (Basel). 2025;15(3):407. <a href="https://doi.org/10.3390/diagnostics15030407">https://doi.org/10.3390/diagnostics15030407</a>
- Richard JL, Sotto A, Lavigne JP. Diabetic foot infection: A critical review of recent updates. Diabetes Metab Res Rev. 2020;36(S1):e3280. <a href="https://doi.org/10.1002/dmrr.3280">https://doi.org/10.1002/dmrr.3280</a>
- Rigato M, Pizzol D, Tiago A, et al. Diabetes foot ulcer and major amputation: Meta-analysis of mortality risk. Eur J Vasc Endovasc Surg. 2018;56(5):681-93. <a href="https://doi.org/10.1016/j.ejvs.2018.06.018">https://doi.org/10.1016/j.ejvs.2018.06.018</a>
- Salem MA, Aboshanab KM, Elshikh AA, et al. Diabetic foot infections in Egypt: Microbiology, resistance patterns, and outcomes. Antibiotics (Basel). 2021;10(11):1349. <a href="https://doi.org/10.3390/antibiotics10111349">https://doi.org/10.3390/antibiotics10111349</a>
- Shettigar K, Murali TS. Virulence factors and biofilms in Staphylococcus aureus and Pseudomonas aeruginosa in diabetic foot infections. Curr Diabetes Rev. 2020;16(6):479-91. <a href="https://doi.org/10.2174/1573399815666191029113341">https://doi.org/10.2174/1573399815666191029113341</a>
- Shobowale EO, Adegunle B, Onyedibe K. Microbiology of diabetic foot infections in Lagos, Nigeria. Niger Postgrad Med J. 2017;24(2):109-14. <a href="https://doi.org/10.4103/npmj.npmj_72_17">https://doi.org/10.4103/npmj.npmj_72_17</a>
- Ugwu ET, Adeleye O, Gezawa I, et al. The burden of diabetic foot ulcers in Nigeria: Evidence from the MEDFUN multicenter study. World J Diabetes. 2019;10(2):200-11. <a href="https://doi.org/10.4239/wjd.v10.i2.200">https://doi.org/10.4239/wjd.v10.i2.200</a>
- Wada FW, Mekonnen MF, Sawiso ED, et al. Bacterial profile and antimicrobial resistance patterns of infected diabetic foot ulcers in sub-Saharan Africa: A systematic review and meta-analysis. Sci Rep. 2023;13:14655. <a href="https://doi.org/10.1038/s41598-023-41882-z">https://doi.org/10.1038/s41598-023-41882-z</a>
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report. Geneva: WHO; 2023. Available from: <a href="https://www.who.int/initiatives/glass">https://www.who.int/initiatives/glass</a>
- Zubair M, Malik A, Ahmad J. Diabetic foot ulcers: An update of current management and treatment. Diabetes Metab Syndr. 2021;15(4):102-9. <a href="https://doi.org/10.1016/j.dsx.2021.05.019">https://doi.org/10.1016/j.dsx.2021.05.019</a>
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.